Abschlußarbeit Effizienzhaus

Lehrgang Fachplanung Energie und Bau Schwerpunkt Effizienzhaus, Modul H

Beratungsobjekt / Gebäude: Le-Corbusier-Str. 34

26127 Oldenburg (i/O)

Eigentümer: Jens Eilers, Dagmar Wingbermühle

Verfasser / Energieberater: Dipl.-Ing. (TU) Jens Eilers, Bauingenieur

Tel.: 0441-2172991 Fax: 0441-2172992 Email: eilers.jens@gmx.de

Mitglied der Ingenieurkammer-NDS: 18927 BAFA-Beraternummer: 180150

Ort, Datum: Oldenburg, Dienstag, 21. Januar 2014

Unterschrift:

Inhaltsverzeichnis

1	Einführung	3
2	Darstellung des Gebäudes	5
3	Pläne, thermische Hülle	7
4	Angaben zur Gebäudehülle und zur Anlagentechnik, Grundvariante	10
5	KfW-Effizienzhaus-Niveaus	11
6	Vergleich der Varianten	12
7	Kosten, Kredit / Zuschüsse, Amortisation	14
8	Fazit	15
9	Ergebnisübersicht Energiebedarfsberechnung Variante 1	16
10	Ergebnisübersicht Energiebedarfsberechnung Variante 2	18
11	Ergebnisübersicht Energiebedarfsberechnung Variante 3	20
12	Bestätigung und Unterschrift	22
Α	Anhang	22
	Datenaufnahme (Flächenermittlung)	23
	EnEV-Nachweis, Grundvariante	27
	EnEV-Nachweis, Variante 1 (KfW 55)	51
	EnEV-Nachweis, Variante 2 (KfW 55)	76
	Übersicht der nachzuweisenden Wärmebrücken	98
	Beispiel Konformitätsnachweis mit DIN 4108 Bbl. 2	99
	Beispiel detaillierte Wärmebrückenberechnung (Simulation)	100

1 Einführung

Das Gebäude in der Le-Corbusier-Str. 34 in 26127 Oldenburg wurde 2011 gebaut (Fertigstellung September 2011). Das Einfamilienhaus wurde auf dem 736m² großen Grundstück entsprechend den Vorgaben des Bebauungsplans für die Neubausiedlung eingeschossig gebaut. Die nachbarschaftliche Bebauung ist nicht eng, so dass solare Gewinne durch Fensterflächen insbesondere in Süd-West-Orientierung grundsätzlich möglich sind. Durch die Sackgassenlage und einen vorhandenen Entwässerungsgraben (der zum Grundstück gehört) wurde eine optimale Nord-Südausrichtung verbunden mit dem Ziel optimaler Gartenausnutzung nicht verfolgt (siehe Lageplan).

Primär wurde das Gebäude nicht energetisch optimiert geplant. Hinsichtlich der Warmwasserverteilung wurde darauf geachtet, die Leitungswege nach Möglichkeit zu minimieren (siehe Grundriss). Weiterhin wurde in Süd-West-Orientierung eine knapp 10m^2 große Dachverglasung - unter Berücksichtigung einer äußeren Verschattung zur Erfüllung des sommerlichen Wärmeschutzes - verbaut, so dass hier in Verbindung mit der offenen Bauweise solare Gewinne realisiert werden. Im Vordergrund stand zum Planungszeitpunkt eine moderne und möglichst zeitlose, architektonische Gestaltung verbunden mit einem sehr guten Wärmedämmniveau sowie bewährter Anlagentechnik (Gas-Brennwerttherme) und dem Einbau einer Lüftungsanlage mit Wärmerückgewinnung. Die Anforderungen gemäß EnEV 2009 ohne Berücksichtigung regenerativer Energien wurden durch Unterschreitung des zulässigen Primärenergiebedarfs und des zulässigen Transmissionswärmeverlustes um jeweils 15% erfüllt.

Sollte zu einem späteren Zeitpunkt solare Energie (Solarthermie oder Photovoltaik) genutzt werden, so würde sich für eine Installation der Kollektoren das Garagen-Flachdach auf der Süd-Ost-Seite anbieten. So wären eine optimale Ausrichtung und ein optimaler Aufstellwinkel möglich. Überdies wäre das Garagendach auch nicht durch Bebauung oder Bepflanzung verschattet.

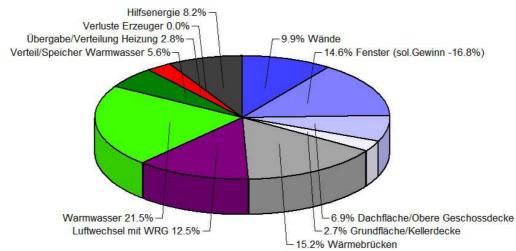
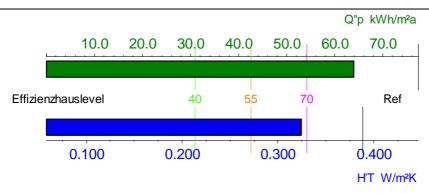
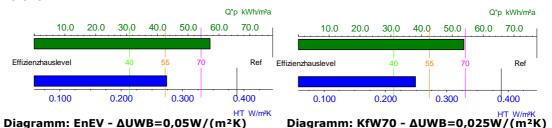




Diagramm: Endenergieverteilung

Dem hier gezeigten Diagramm Endenergieverteilung ist zu entnehmen, dass die Warmwasserbereitung mit 21,5% und der mit 0,10 W/(m²K) angesetzte Wärmebrückenfaktor mit 15,2% mehr als ein Drittel der gesamten Endenergie ausmachen. Der Verlust über die Fenster liegt bei 14,6%, jedoch wiegen die solaren Gewinne mit 16,8% den Verlust wieder auf. Eine Verbesserung der Gebäudehülle, insbesondere der Grundfläche, des Daches und der Außenwände würde verhältnismäßig wenig bringen. Der Einsatz anderer Anlagentechnik z.B. einer Wärmepumpe würde sich primärenergetisch deutlich auswirken.

Mit erfülltem Konformitätsnachweis gemäß DIN 4108 Bbl.2 und einem Wärmebrückenfaktor von 0,05 W/(m²K) würde kein KfW-Effizienzhausniveau (KfW70) erreicht. Würde mit einer detaillierten Wärmebrückenberechnung ein Wärmebrückenfaktor von maximal 0,025 W/(m²K) berechnet, dann würde KfW70-Niveau erreicht:

Mit Installation einer solaren Brauchwasseranlage ergibt sich:

- mit ΔWB=0,100W/(m²K): KfW70 (siehe Diagramm nachfolgend)
- mit $\Delta WB = 0.050W/(m^2K)$: KfW70
- mit ΔWB≤0,025W/(m²K): KfW55 (siehe Diagramm nachfolgend)

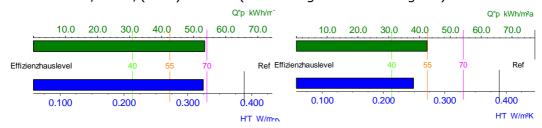


Diagramm: KfW70 - ΔUWB=0,10W/(m²K) Diagramm: KfW55 - ΔUWB=0,025W/(m²K)

Mit Installation einer solaren Brauchwasseranlage und einer Wärmepumpe (Wasser-Wasser) ergibt sich:

- mit $\Delta WB = 0.050W/(m^2K)$: KfW55
- mit ΔWB≤0,006W/(m²K): KfW40 und Einblasdämmung in den Außenwänden

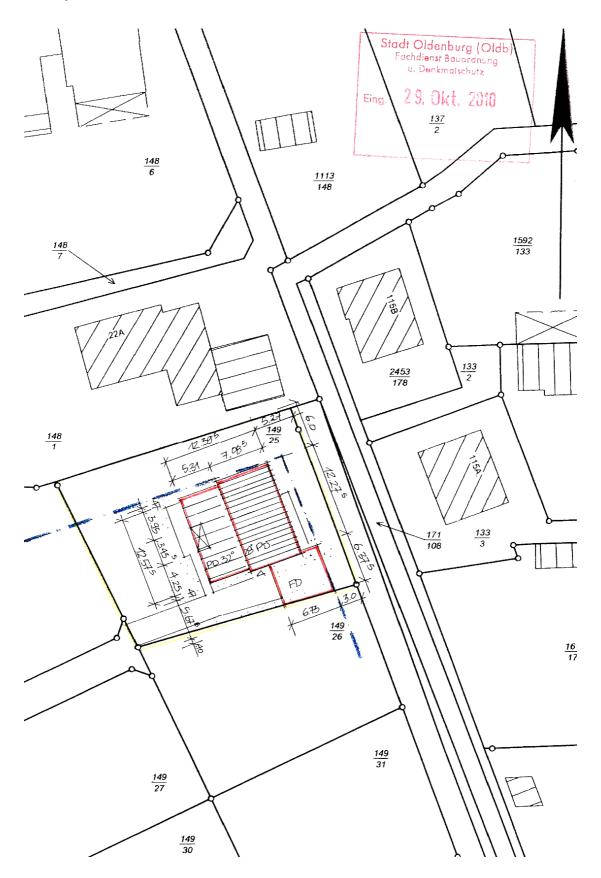
Diagramm: KfW55 - ΔUWB=0,05W/(m²K) Diagramm: KfW40 - ΔUWB=0,006W/(m²K)

Ein Wärmebrückenfaktor von ≤ 0,006 W/(m²K) erscheint über einen detaillierten Wärmebrückennachweis eher unwahrscheinlich. Alternativ müsste die Gebäudehülle unverhältnismäßig stärker gedämmt werden, was unwirtschaftlich ist. In dieser Ausarbeitung wird ein Konformitätsnachweis und ein detaillierter Wärmebrückennachweis exemplarisch und nicht vollumfänglich erbracht (S.99/100).

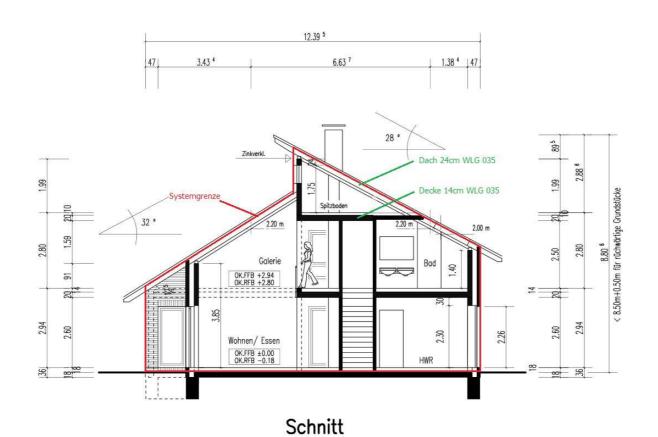
2 Darstellung des Gebäudes

Ansicht transparent Süd

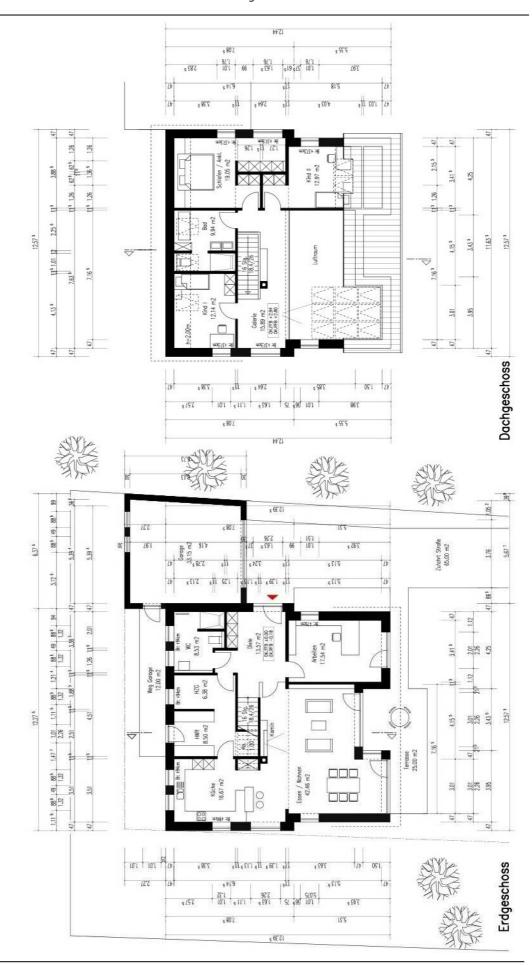
Ansicht transparent Ost



Ansicht transparent Nord


Ansicht transparent West

3 Pläne, thermische Hülle



Planungsansichten (Hinweis: veränderte Fenstermaße i.Vgl. zur Bauausführung)

8

4 Angaben zur Gebäudehülle und zur Anlagentechnik, Grundvariante

GEBÄUDEHÜLLE

- Berücksichtigung Wärmebrücken, pauschal: ΔUwb=0,10 W/(m²K)
- 3-fach-Verglasung mit Ug=0,7 W/(m²K) und Uf=1,0 W/(m²K), 7cm Rahmen Fenster: Uw nach DIN EN ISO 10077 berechnet
- Dachverglasung mit Ug=0,6W/(m²K), Uw=0,96W/(m²K)
- Dachfenster mit Uw=1,3 W/(m²K)
- alle Fenster verschattet: Alu-Außenrollläden
- Konstruktive Geschoßhöhe hg=2,98m, von OK Rohdecke EG zu OK Rohdecke OG
- Spitzboden innerhalb thermischer Hülle
- Aufbau Bodenplatte:
 10cm Perimeterdämmung
 20cm Beton
 Abdichtung
 5cm EPS WLG 035
 4cm PIR Alu-kaschiert WLS 024
 3cm EPS WLG 035
 5cm Estrich
- Dämmung in Dach: 24cm WLG 035 (Sparren- zu Gefachanteil: 10%)
- Decke 14cm WLG 035 (Sparren- zu Gefachanteil: 10%)
- 47cm Außenwand:
 17.5cm Porenbeton
 14cm WLG 035
 4cm Luft
 11.5cm Verblendmauerwerk

- Luftdichtheitsprüfung durchgeführt (14.09.2011): n50 = 0.85 1/hzulässiger Grenzwert nach DIN 4108-7 und EnEV: $n50 \le 1.50 \text{ 1/h}$ (mit Lüftungsanlage)

ANLAGENTECHNIK

- Heizungsanlage: Gas-Brennwerttherme (innerhalb thermischer Hülle)
 - ⇒ Vaillant ecoTECplus VC 126/3-5
 - ⇒ Fußbodenheizung, Heizkreistemperatur 35°C/28°C
- Einzelfeuerstätte: Kaminofen (Holz) mit 10% angesetzt für EnEV (nicht für KfW)
- Warmwasserbereitung, Speicher, indirekt beheizt
 ⇒ Vaillant uniSTOR VIH R150
- Lüftung: Lüftungsanlage mit Wärmerückgewinnung
 ⇒ Vaillant recoVAIR VAR 275/3

5 KfW-Effizienzhaus-Niveaus

- Die errechneten Werte für den Jahres-Primärenergiebedarf (Q_P) und den Transmissionswärmeverlust (H'_T) für das Neubauobjekt dürfen im Verhältnis zu den jeweiligen Werten des entsprechenden Referenzgebäudes (Q_{P REF}; H'_{T REF}) die in der untenstehenden Tabelle angegebenen prozentualen Maximalwerte nicht überschreiten.
- Gleichzeitig darf der Transmissionswärmeverlust des Neubauobjekts nicht h\u00f6her sein, als nach Tabelle 2 der Anlage 1 der EnEV₂₀₀₉ zul\u00e4ssig.

KfW-Effizienzhaus	40	55	70
Qp in % Qp REF	40 %	55 %	70 %
H' _T in % H' _{T REF}	55 %	70 %	85 %

KfW-Effizienzhaus 40 (Passivhaus)

Der Jahres-Primärenergiebedarf (Q_P) darf nicht mehr als 30 kWh pro m² Gebäudenutzfläche (A_N) und der Jahres-Heizwärmebedarf (Q_H) nach dem Passivhaus Projektierungspaket (PHPP) nicht mehr als 15 kWh pro m² Wohnfläche betragen.

KfW-Effizienzhaus 55 (Passivhaus)

Der Jahres-Primärenergiebedarf (Q_P) darf nicht mehr als 40 kWh pro m² Gebäudenutzfläche (A_N) und der Jahres-Heizwärmebedarf (Q_H) nach dem Passivhaus Projektierungspaket PHPP nicht mehr als 15 kWh pro m² Wohnfläche betragen.

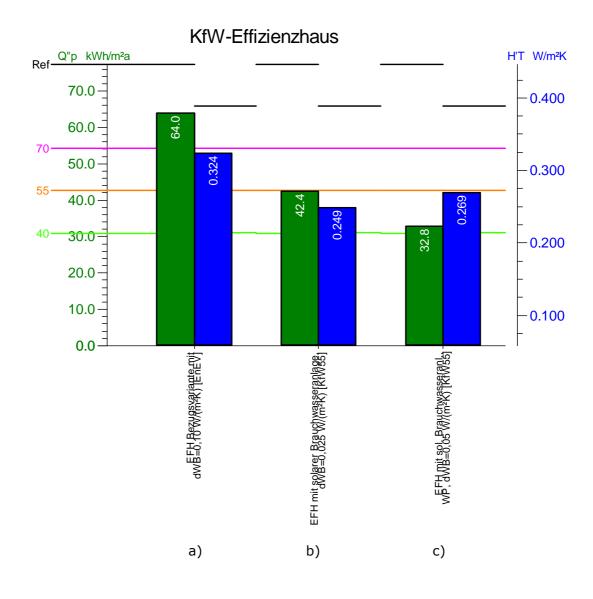
KfW-Effizienzhäuser

Die geforderten Werte für den Jahres-Primärenergiebedarf und den auf die wärmeübertragende Umfassungsfläche des Gebäudes bezogenen spezifischen Transmissionswärmeverlust sind zum Beispiel durch Kombinationen folgender Maßnahmen zu erreichen:

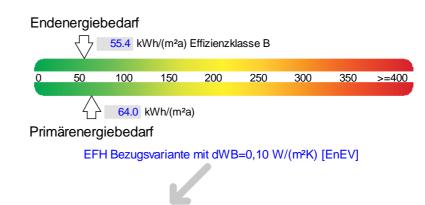
- hoch wärmegedämmte Außenwände, Kellerdecke, Dach bzw. hoch gedämmte oberste Geschossdecke gegen ein nicht ausgebautes Dachgeschoss
- Zweischeiben- oder Dreischeiben-Wärmeschutzverglasung mit wärmedämmenden Fensterrahmen
- Minimierung von Wärmebrücken
- Lüftungsanlage, kontrollierte Lüftung mit mehr als 80 % Wärmerückgewinnung aus der Abluft
- luftdichte Gebäudehülle
- thermische Solaranlage zur Unterstützung der Warmwasserversorgung und Heizung. Die Solaranlage sollte mit einem geeigneten Funktionskontrollgerät bzw. Wärmemengenzähler ausgestattet sein und das europäische Prüfzeichen Solar Keymark in der Fassung Version 8.0 - Januar 2003 tragen oder die Anforderungen des Umweltzeichens RAL-UZ 73 erfüllen.

Quelle: www.kfw.de

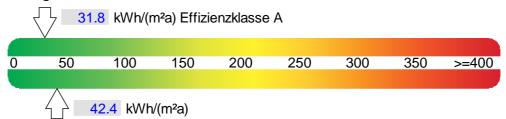
Anlage zum Merkblatt "Programm Energieeffizient Bauen (153), Techn. Mindestanforderung.


6 Vergleich der Varianten

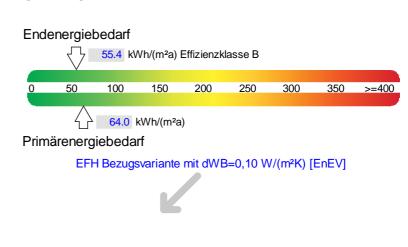
Wie bereits auf S.4 beschrieben macht in diesem Fall eine Umsetzung zum KfW40-Effizienzhaus weniger Sinn. Zudem kann sich der berechnete Energiebedarf im Vergleich zum tatsächlichen in Abhängigkeit vom Nutzerverhalten deutlich unterscheiden.

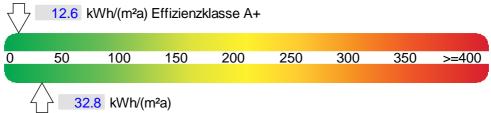

Nachfolgend werden 3 Varianten dargestellt:

- a) Gebaute Variante, EnEV-Niveau mit ΔUWB=0,10 W/(m²K)
- b) KfW55-Niveau mit ΔUWB=0,025 W/(m²K), detaillierter WB-Nachweis
- c) KfW55-Niveau mit ΔUWB=0,05 W/(m²K), WB-Konformität mit Bbl.2


Die Variante b) unterscheidet sich von der Variante a) durch eine zusätzliche solare Brauchwasseranlage und den detaillierten Nachweis aller Wärmebrücken, wobei ein maximaler $\Delta UWB=0,025~W/(m^2K)$ eingehalten werden muss. Die Variante c) unterscheidet sich von der Variante a) durch eine zusätzliche solare Brauchwasseranlage und eine Wärmepumpe als Heizungsanlage anstatt der Gas-Brennwerttherme sowie den erbrachten WB-Gleichwertigkeitsnachweis gemäß DIN4108 Bbl. 2. Die Gebäudehülle ist für alle Varianten identisch.

Energieausweis Variante b) i. Vgl. zu a)


Endenergiebedarf


Primärenergiebedarf

EFH mit solarer Brauchwasseranlage, dWB=0,025 W/(m²K) [KfW55]

Energieausweis Variante c) i. Vgl. zu a)

Endenergiebedarf

Primärenergiebedarf

EFH mit sol. Brauchwasseranl., WP, dWB=0,05 W/(m²K) [KfW55]

7 Kosten, Kredit / Zuschüsse, Amortisation

Kosten:

Geschätzte Mehrkosten Variante b)

solare Brauchwasseranlage:
 Detaillierter Wärmebrückennachweis:
 ca. 10.000 €
 ca. 2.000 €

Summe: ca. 12.000 €

Geschätze Mehrkosten Variante c)

- solare Brauchwasseranlage:
- Wärmepumpe (inkl. Tiefenbohrung):
- Wärmebrücken-Konformitätsnachweis:
ca. 10.000 €
ca. 25.000 €

Summe: ca. 36.000 €

Kredit / Zuschüsse:

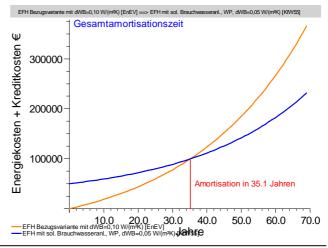
max. Kredithöhe pro Wohneinheit

- 50.000 €

Bei einer Laufzeit von z.B. 10 Jahren (10 Jahre Zinsbindung):

- effektiver Sollzins pro Jahr: 1,71%

Tilgungszuschuss für KfW55, 5% der Darlehenssumme:


- 5 % der Darlehenssumme, bis zu 2.500 € für jede Wohneinheit

Amortisation bei 3- bis 6-%-iger Energiekostensteigerung pro Jahr:

Variante b) ~24 Jahre

Variante c) ~35 Jahre

8 Fazit

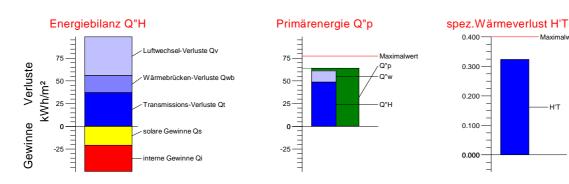
Die gebaute Grundvariante ist hinsichtlich des Primärenergiebedarfs und des Transmissionswärmeverlustes verglichen mit dem Referenzgebäude auf einem sehr guten Niveau (s. S.4). Der Transmissionswärmeverlust liegt bei einem pauschal angesetzten $\Delta UWB=0,10~W/(m^2K)$ unterhalb des nach KfW70 geforderten Grenzwertes. Mit einem detaillierten Wärmebrückennachweis und einem maximalen $\Delta UWB=0,025~W/(m^2K)$ - was für dieses Gebäude realistisch erscheint - würde das KfW70-Niveau erreicht.

Um ein KfW55-Niveau zu erreichen, könnte gemäß Variante b) zusätzlich eine solare Brauchwasseranlage installiert werden. Um den für KfW55 geforderten ("rechnerischen") Transmissionswärmewärmeverlust einzuhalten, müsste ein detaillierter Wärmebrückennachweis für sämtliche Anschlußdetails mit einem ∆UWB = 0,025 W/(m²K) erbracht werden. Die Zusatzkosten für die solare Brauchwasseranlage und den Wärmebrückennachweis sind mit ca. 12.000 € anzusetzen. Die Amortisationszeit liegt schätzungsweise bei 24 Jahren.

Eine weitere Möglichkeit, ein KfW55-Niveau zu erreichen wird mit Variante c) beschrieben. Wäre ein detaillierter Wärmebrückennachweis nicht gewollt, nicht machbar (z.B. wegen unzureichender Detailplanung) oder der für die Variante b) beschriebene Grenzwert von $\Delta UWB = 0,025~W/(m^2K)$ wäre mit einer Berechnung nicht einzuhalten, dann bestünde die Möglichkeit, die Anlagentechnik mit der Installation einer Wärmepumpe aufzuwerten. Außerdem müsste in diesem Fall gemäß DIN 4108 Bbl. 2 die Gleichwertigkeit sämtlicher Anschlußdetails nachgewiesen werden, um den Wärmebrückenfaktor $\Delta UWB = 0,05~W/(m^2K)$ zu rechtfertigen. Die Zusatzkosten bei dieser Variante lägen bei schätzungsweise 36.000 $\mathfrak C$. Die Amortisationszeit liegt bei ca. 35 Jahren.

Der Vergleich beider KfW55-Varianten zeigt, dass die Variante b) hinsichtlich des Kostenaufwandes und der Amortisationszeit die attraktivere Variante darstellt. Mit einer Wärmebrücken-minimierten Detailplanung und einem detaillierten Wärmebrückennachweis können KfW-Effizenzhaus-Niveaus auf wirtschaftliche Weise erreicht werden und sind bei (Hoch-) Effizienzhäusern stets zu empfehlen.

9 Ergebnisübersicht Energiebedarfsberechnung Variante 1


Energieeinsparnachweis

nach der Energieeinsparverordnung EnEV 2009

vom 29.04.2009 öffentlich rechtlicher Nachweis

nach dem "Monatsbilanzverfahren" der DIN V 4108-6:2003-06 und Berechnung der Anlagentechnik nach DIN V 4701-10:2003-08

ENERGIEBILANZ

nutzbare Gewinne		[kWh/a]		Verluste		[kWh/a]					
solare Gewinne η*Q _s	:	5817		Transmission Q _t	:	11810					
interne Gewinne $\eta * Q_i$:	8094		Wärmebrücken QwB	:	5269					
				Lüftungsverluste Q _v	:	11855					
				Nachtabsenkung Q _{NA}	:	-824					
				solar opake Bauteile Q _{S opak}	:	-675					
		13911				27436					
==> Jahresheizwärmebedar	f Q _h 13524 [kWh/a]	==> Jahresheizwärmebedarf Q _h 13524 [kWh/a] + Trinkwassererwärmung Q _w 3487 [kWh/a]									

eine Nachtabschaltung wurde : berücksichtigt Anlagenaufwandszahl e_P : 1.049 Nutzfläche : 279.0 m^2 Gebäudeart : Wohngebäude Jahresheizwärmebedarf Q^n_h : $48.48 \text{ kWh/m}^2 \text{a}$

Endergebnis der EnEV-Berechnung

Jahres-Primärenergiebedarf Q"_P:

bezogen auf die Gebäudenutzfläche
maximal zulässiger Jahres-Primärenergiebedarf:

spezifischer Transmissionswärmeverlust H'_T:

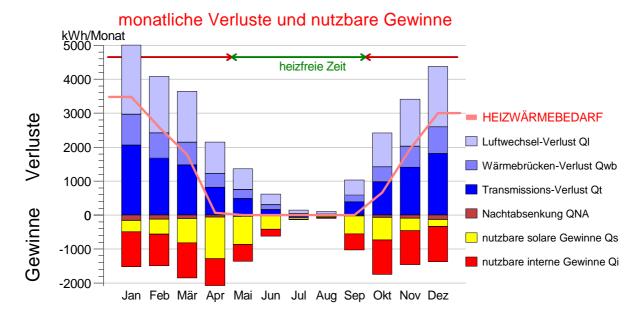
der Gebäudehüllfläche
maximal zulässiger spezifischer

Transmissionswärmeverlust:

17.3% besser als Neubau

17.3% besser als Neubau

19.0% besser als Neubau


20.324 [W/m²K]

die maximal zulässigen Grenzwerte werden eingehalten.

Volumen und Flächen

Gebäudevolumen Ve 871.7 m³ Gebäudehüllfläche A 600.7 m² 0.689 1/m A/V_e Außenwandfläche A_{AW} 396.6 m² Fensterfläche Aw 58.3 m²

12.8 % (nach EnEV 2002-2007 Anhang 1 Absatz 2.8) Fensterflächenanteil f

allgemeine Projektdaten

Temperatur Warmseite ϑ_i : 19°C (normale Innenraumtemperatur >= 19 °C nach Anhang 1 der EnEV) Gebäudeart

: Wohngebäude Warmwasseraufbereitung : ein Massivbau

das Gebäude ist : ein Neubau

: 0.0° aus der Nord-Süd-Richtung gedreht. das Gebäude ist um

Luftvolumenberechnung

: es handelt sich um ein Gebäude mit bis zu drei Vollgeschossen und nicht Gebäudeart

mehr als zwei Wohnungen oder um ein Ein- oder Zweifamilienhaus bis zu 2 Vollgeschossen und nicht mehr als 3 Wohneinheiten

Gebäudevolumen Ve : 871.7 m³

: 662.5 m³ Luftvolumen 0,76 * Gebäudevolumen

Nutzflächenberechnung

Gebäudehöhe : 8.50 m Geschoßanzahl Gebäudegrundfläche : 145.7 m² Grundflächenumfang · 52.9 m

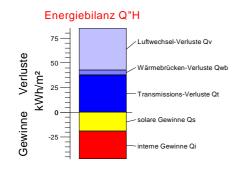
Gebäudenutzfläche : 279.0 m² 0.32 * Gebäudevolumen

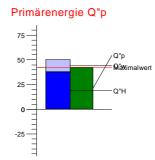
10 Ergebnisübersicht Energiebedarfsberechnung Variante 2

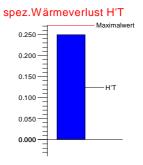
Energieeinsparnachweis

nach der Energieeinsparverordnung EnEV 2009

vom 29.04.2009


KfW-Effizienzhaus 55 (EnEV₂₀₀₉)


öffentlich rechtlicher Nachweis


nach dem "Monatsbilanzverfahren" der DIN V 4108-6:2003-06

und Berechnung der Anlagentechnik nach DIN V 4701-10:2003-08

ENERGIEBILANZ

nutzbare Gewinne		[kWh/a]		Verluste		[kWh/a]				
solare Gewinne η*Q _s	:	5366		Transmission Q _t	:	11810				
interne Gewinne η*Q _i	:	7792		Wärmebrücken Q _{WB}	:	1317				
				Lüftungsverluste Q _v	:	11855				
				Nachtabsenkung Q _{NA}	:	-605				
				solar opake Bauteile Q _{S opak}	:	-675				
		13158				23703				
==> Jahresheizwärmebedar	==> Jahresheizwärmebedarf Q _h 10532 [kWh/a] + Trinkwassererwärmung Q _w 3487 [kWh/a]									

eine Nachtabschaltung wurde : berücksichtigt Anlagenaufwandszahl e_P : 0.844 Nutzfläche : 279.0 m² Gebäudeart : Wohngebäude Jahresheizwärmebedarf Q^n_h : 37.75 kWh/m²a

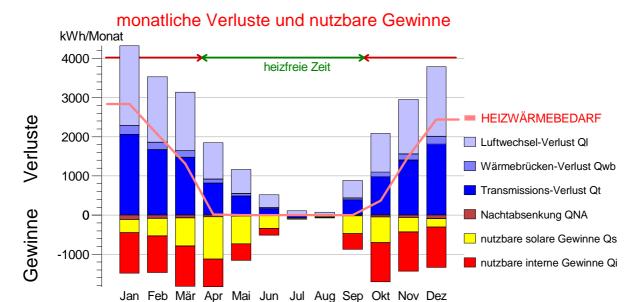
Endergebnis der EnEV-Berechnung

Jahres-Primärenergiebedarf Q"_P:
bezogen auf die Gebäudenutzfläche
maximal zulässiger Jahres-Primärenergiebedarf:
spezifischer Transmissionswärmeverlust H'_T:
der Gebäudehüllfläche
maximal zulässiger spezifischer

Transmissionswärmeverlust:

42.4 [kWh/m²a]
42.6 [kWh/m²a] 77.4 [kWh/m²a]
0.249 [W/m²K]
0.272 [W/m²K] 0.388 [W/m²K] 0.400 [W/m²K]
0.400 [W/III-K]

45.2% besser als Neubau für KfW-Effizienzhaus 55


nach EnEV

37.7% besser als Neubau 35.9% besser Ref-Gebäude für KfW-Effizienzhaus 55 vom Referenzgebäude nach EnEV

die maximal zulässigen Grenzwerte werden eingehalten.

Volumen und Flächen

Fensterflächenanteil f : 12.8 % (nach EnEV 2002-2007 Anhang 1 Absatz 2.8)

allgemeine Projektdaten

 $Temperatur \ Warmseite \ \vartheta_i \\ \hspace{2cm} : 19^{\circ}C \ (normale \ Innenraum temperatur >= 19 \ ^{\circ}C \ nach \ Anhang \ 1 \ der \ EnEV)$

Gebäudeart : Wohngebäude
Warmwasseraufbereitung : zentral
Bauart : ein Massivbau

das Gebäude ist : ein Neubau

das Gebäude ist um : 0.0° aus der Nord-Süd-Richtung gedreht.

Luftvolumenberechnung

Gebäudeart : es handelt sich um ein Gebäude mit bis zu drei Vollgeschossen und nicht

mehr als zwei Wohnungen oder um ein Ein- oder Zweifamilienhaus bis zu

2 Vollgeschossen und nicht mehr als 3 Wohneinheiten

Gebäudevolumen V_e : 871.7 m³

Luftvolumen : 662.5 m³ 0,76 * Gebäudevolumen

Nutzflächenberechnung

Gebäudenutzfläche : 279.0 m² 0.32 * Gebäudevolumen

Wärmebrücken detailliert

Die Wärmebrücken wurden separat nachgewiesen. Der Wärmebrückenaufschlag beträgt 15.017 W/K (0.0250 W/m²K)

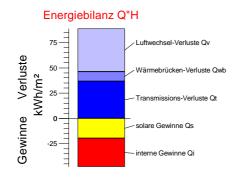
Gesamt-Wärmebrückenverlust pro Jahr Qwb =1317 kWh/a

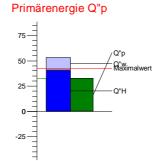
11 Ergebnisübersicht Energiebedarfsberechnung Variante 3

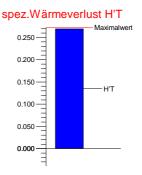
Energieeinsparnachweis

nach der Energieeinsparverordnung EnEV 2009

vom 29.04.2009


KfW-Effizienzhaus 55 (EnEV₂₀₀₉)


öffentlich rechtlicher Nachweis


nach dem "Monatsbilanzverfahren" der DIN V 4108-6:2003-06

und Berechnung der Anlagentechnik nach DIN V 4701-10:2003-08

ENERGIEBILANZ

nutzbare Gewinne		[kWh/a]		Verluste		[kWh/a]				
solare Gewinne η*Q _s	:	5503		Transmission Q _t	:	11558				
interne Gewinne η*Q _i	:	7884		Wärmebrücken QwB	:	2634				
				Lüftungsverluste Q _v	:	11855				
				Nachtabsenkung Q _{NA}	:	-660				
				solar opake Bauteile Q _{S opak}	:	-659				
		13387				24728				
==> Jahresheizwärmebeda	==> Jahresheizwärmebedarf Q _h 11340 [kWh/a] + Trinkwassererwärmung Q _W 3487 [kWh/a]									

eine Nachtabschaltung wurde
Anlagenaufwandszahl e
Nutzfläche
Gebäudeart
Jahresheizwärmebedarf Q"

eine Nachtabschaltung wurde

i berücksichtigt
0.618

279.0 m²
Wohngebäude

40.65 kWh/m²a

Endergebnis der EnEV-Berechnung

bezogen auf die Gebäudenutzfläche maximal zulässiger Jahres-Primärenergiebedarf: spezifischer Transmissionswärmeverlust H'_T: der Gebäudehüllfläche

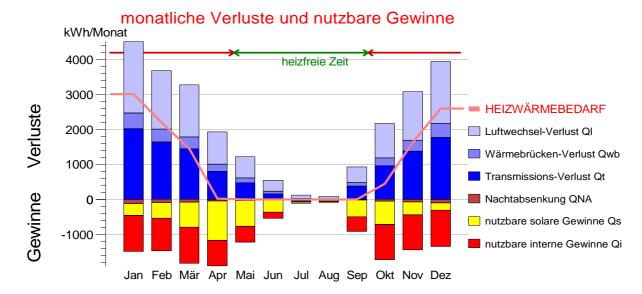
Jahres-Primärenergiebedarf Q"P:

maximal zulässiger spezifischer Transmissionswärmeverlust:

32.8 [kWh/m²a]
42.6 [kWh/m²a]
77.4 [kWh/m²a]
0.269 [W/m²K]
0.272 [W/m²K] 0.388 [W/m²K]
0.400 [W/m ² K]

57.6% besser als Neubau

für KfW-Effizienzhaus 55 nach EnEV


32.7% besser als Neubau 30.7% besser Ref-Gebäude für KfW-Effizienzhaus 55 vom Referenzgebäude nach EnEV

die maximal zulässigen Grenzwerte werden eingehalten.

Volumen und Flächen

Gebäudevolumen V 871.7 m³ Gebäudehüllfläche A 600.7 m² 0.689 1/m A/V_e Außenwandfläche A_{AW} 396.6 m² Fensterfläche Aw 58.3 m²

Fensterflächenanteil f 12.8 % (nach EnEV 2002-2007 Anhang 1 Absatz 2.8)

allgemeine Projektdaten

Temperatur Warmseite ϑi : 19°C (normale Innenraumtemperatur >= 19 °C nach Anhang 1 der EnEV)

Gebäudeart : Wohngebäude Warmwasseraufbereitung : zentral Bauart : ein Massiybau

das Gebäude ist : ein Neubau

das Gebäude ist um : 0.0° aus der Nord-Süd-Richtung gedreht.

Luftvolumenberechnung

Gebäudeart : es handelt sich um ein Gebäude mit bis zu drei Vollgeschossen und nicht

mehr als zwei Wohnungen oder um ein Ein- oder Zweifamilienhaus bis zu

2 Vollgeschossen und nicht mehr als 3 Wohneinheiten

Gebäudevolumen Ve : 871.7 m³ : 662.5 m³ 0,76 * Gebäudevolumen

Nutzflächenberechnung

Gebäudehöhe : 8.50 m Geschoßanzahl : 2 : 145.7 m² Gebäudegrundfläche Grundflächenumfang : 52.9 m

Gebäudenutzfläche 0.32 * Gebäudevolumen

Wärmebrücken pauschal mit Nachweis nach DIN 4108, Bbl.2

Es wurden ausschließlich wärmetechnisch äquivalente Konstruktionen nach DIN 4108, Bbl.2 verwendet.

Bei der Berechnung des Verlustes durch die Wärmebrücken wurde bei jedem verwendeten Bauteil ein Aufschlag auf den U-Wert von 0,05 W/m2K, berücksichtigt.

Dabei wurden 0.0 m² Oberfläche ausgenommen (z.B.Vorhangfassade).

ursprünglicher mittlerer U-Wert 0.219 W/m²K [Abminderungsfaktoren sind berücksichtigt] neuer mittlere U-Wert 0.269 W/m²K

Transmissionsverlust erhöht sich um

Qwb = 2634 kWh/a 22.79 %

12 Bestätigung und Unterschrift

Ich bestätige hiermit, dass ich diese Abschlussarbeit auf Basis der dar gestellten Grundlagen selbst angefertigt habe.

Oldenburg, den 21. Januar 2014

13 Anhang

Datenaufnahme (Flächenermittlung)	23
EnEV-Nachweis, Grundvariante	27
EnEV-Nachweis, Variante 1 (KfW 55)	51
EnEV-Nachweis, Variante 2 (KfW 55)	76
Übersicht der nachzuweisenden Wärmebrücken	98
Beispiele Konformitätsnachweis mit DIn 4108 Bbl. 2	99
Beispiele detaillierte Wärmebrückenberechnung (Simulation)	100

Gebäudevolumen

Bezeich.	Formel	Länge [L]	Länge[L1]	Breite [B]	Höhe [H]	Faktor	Ergebnis
EG/OG	(L+L1)/2*B*H	8,48	4,71	7,09	12,58	1	587,57
EG/OG	(L+L1)/2*B*H	6,57	3,25	5,31	11,64	1	303,35
EG/OG	(L+L1)/2*B*H	4,20	3,25	1,50	3,44	-1	- 19,19
<u>Gebäudevo</u>	<u>lumen</u>		[m³]	Ξ		;	871,73

Fensterflächen

Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Anzahl		Ergebnis
F NordOst	L*B	1,32		0,89	5		5,84
F NordOst	L*B	2,26		1,01	1	N-Tür	2,28
Fenster Nord	Ost gesamt					F1	<u>8,12</u>

Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Anzahl		Ergebnis
F SüdWest	L*B	2,26		2,01	2		9,09
F SüdWest	L*B	2,26		3,01	1		6,80
F SüdWest	L*B	0,69		1,01	3		2,09
Fenster SüdV	Vest gesamt					F2	17,98

Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Anzahl		Ergebnis
F WestNord	L*B	1,32		1,01	2		2,67
F WestNord	L*B	1,32		1,64	1		2,16
F WestNord	L*B	2,26		1,64	1		3,70
Fenster West	Nord gesamt					F3	8,52

Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Anzahl		Ergebnis
F OstSüd	L*B	1,51		1,01	1		1,53
F OstSüd	L*B	2,26		1,01	1		2,28
F OstSüd	L*B	1,32		1,64			2,16
F OstSüd	L*B	2,26		1,64	1	H-Tür	3,70
Fenster OstS	üd gesamt					F4	<u>9,66</u>

Außenwandflächen

Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Faktor		Ergebnis
NordOst	L*B	12,58		4,71	1		59,23
NordOst Auß	enwand gesan	nt			,	A1	<u>59,23</u>

Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Faktor		Ergebnis
SüdWest	L*B	11,64		1,91	1		22,22
SüdWest	L*B	0,47		8,48	2		7,97
SüdWest	L*B	8,20		3,25	1		26,65
SüdWest	L*B	3,44		4,20	1		14,43
SüdWest Auß		, ,		4,20	1	A2	71

Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Faktor		Ergebnis
WestNord	(L+L1)/2*B	8,48	4,71	7,09	1		46,73
WestNord	(L+L1)/2*B	6,57	3,25	5,31	1		26,07
WestNord	(L+L1)/2*B	4,20	3,25	1,50	1		5,59
WestNord Au	Benwand ges	amt				А3	<u>78,39</u>

Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Faktor		Ergebnis
OstSüd	(L+L1)/2*B	8,48	4,71	7,09	1		46,73
OstSüd	(L+L1)/2*B	6,57	3,25	5,31	1		26,07
OstSüd	(L+L1)/2*B	4,20	3,25	1,50	1		5,59
OstSüd Auße	nwand gesam	t				A4	<u>78,39</u>

Genaue Wandflächen nach Abzug der Fenster

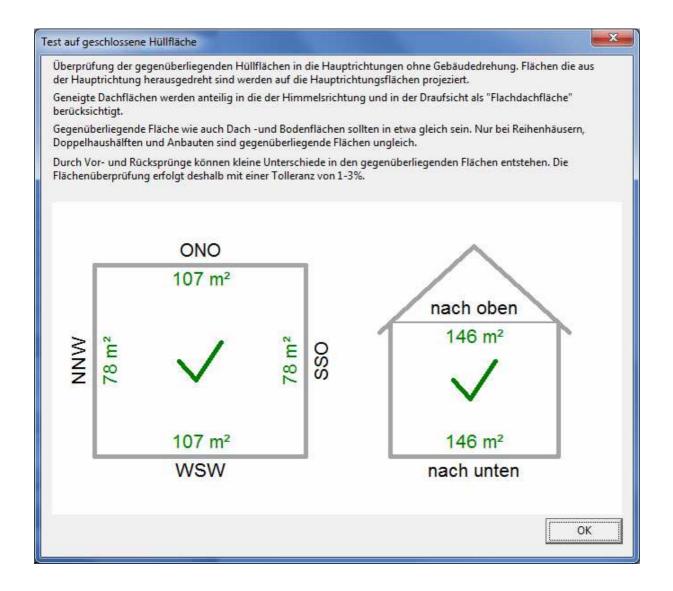
Bezeichnung	Formel	Wand	Fenster			Ergebnis
NordOst	W - F	59,23	8,12		<u>AW1</u>	<u>51,10</u>
SüdWest	W - F	71,27	17,98		AW2	<u>53,29</u>
WestNord	W - F	78,39	8,52		<u>AW3</u>	69,87
OstSüd	W - F	78,39	9,66		AW4	<u>68,72</u>

Sohlfläche

<u>Dachfläche</u>

Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Faktor		Ergebnis
NordOst	L*B	12,58		8,03	1,00	D1	100,91
SüdWest	L*B	11,64		6,26	1,00	D2	66,76

Dachflächenfenster


Bezeichnung	Formel	Länge [L]	Länge[L1]	Breite [B]	Faktor		Ergebnis
NordOst	L*B	1,20		0,75	3,00	DF1	2,70
SüdWest	L*B	1,40		0,75	2,00	DF2	2,10
SüdWest	L*B	3,68		0,84	3,00	DF3	9,22

Genaue Dachflächen nach Abzug der Fenster

Bezeichnung	Formel	Dach	Fenster			Ergebnis
NordOst	D1-DF1	100,91	2,70		W1	<u>98,21</u>
SüdWest	W - F	66,76	11,32	DV	<u>W2</u>	<u>55,44</u>

Zusammenst	ellung			
Art	Bezeichn.	Fläche		
Fenster	F1	8,12	Гm21	
Fenster	F2	17,98		
Fenster	F3	8,52		
Fenster	F4		[m²]	
Außenwand		51,10		
		53,29		
Außenwand Außenwand		69,87		
		68,72		
Außenwand Dachfläche	D1			
		100,91		
Dachfläche	D2	66,76		
Dachfenster		2,70		
Dachfenster Dachfenster		2,10		
Dachfenster		9,22		
Dach	DW1	98,21		
Dach	DW2	55,44		
Sohle	G1	145,72		
Umfang	U	52,94	լՠյ	
Gebäudevolu	ımen	871,73	[m³]	A/Ve = 0,69
Hüllfläche:		600,66	[m²]	
Fensterfläch	en: Af	58,30	[m²]	Af/Awf = 12,82%
Außenwandf	lächen: Awf (ink	l. Af) 454,94	[m²]	•

Hüllflächen-Konsistenz-Check (aus dem EnEV-Programm Rowa-Soft, V. 14.22):

Energieeinsparnachweis

nach der Energieeinsparverordnung EnEV 2009

vom 29.04.2009 öffentlich rechtlicher Nachweis

nach dem "Monatsbilanzverfahren" der DIN V 4108-6:2003-06

und Berechnung der Anlagentechnik nach DIN V 4701-10:2003-08

16.Jan 2014

Projekt Kurzbeschreibung: EFH Eilers / Wingbermühle

Bauvorhaben: Einfamilienhaus (183,6m² Wohnfläche) mit Garage, Baujahr 2011, 26127 OL

H'T=0,324 W/(m²K) mit dWB=0,10 W/(m²K); Gas-Brennwert, Lüftung WRG

Bearbeiter : Dipl.-Ing. Jens Eilers

Objektstandort Baujahr 2011

Straße/Hausnr.: Le-Corbusier-Str. 34 Plz/Ort : 26127 Oldenburg

Gemarkung: Eversten, Flur 18 Flurstücknummer: 149/25

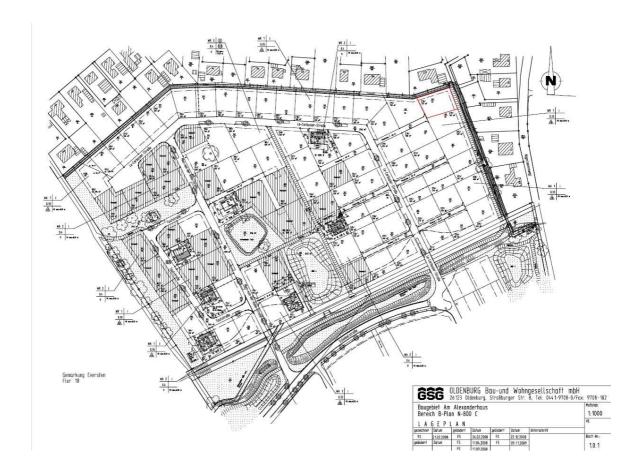
Hauseigentümer/Bauherr

Name/Firma : Jens Eilers, Dagmar Wingbermühle

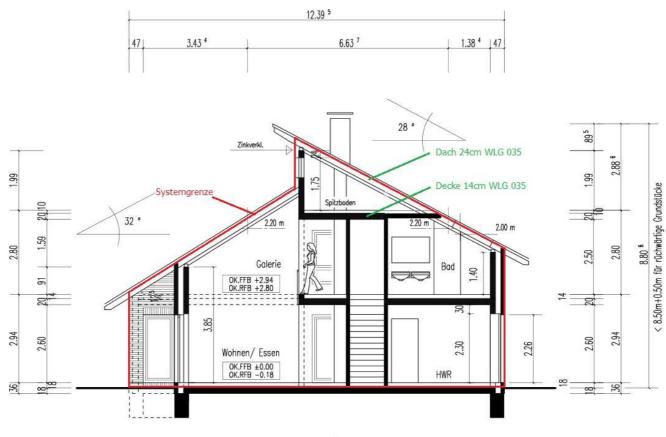
Straße/Hausnr.: Le-Corbusier-Str. 34 Plz/Ort : 26127 Oldenburg Telefon / Fax : 0441-2172990

GEBÄUDEHÜLLE

- Berücksichtigung Wärmebrücken, pauschal: Delta Uwb=0,10 W/(m²K)
- 3-fach-verglaste Fenster mit Ug=0,7 W/(m²K) und Uf=1,0 W/(m²K) mit 7cm Rahmen Fenster: Uw nach DIN EN ISO 10077 berechnet
- Dachverglasung mit Ug=0,6W/(m²K), Uw=0,96W/(m²K)
- Dachfenster mit Uw=1,3 W/(m²K)
- alle Fenster verschattet: Alu-Außenrolläden
- Konstruktive Geschoßhöhe hg=2,98m, von OK Rohdecke EG zu OK Rohdecke OG
- Spitzboden innerhalb thermischer Hülle
- Aufbau Bodenplatte:
 - 10cm Perimeterdämmung, 20cm Beton, Abdichtung
 - 5cm EPS WLG 035, 4cm PIR Alu-kaschiert WLS 024, 3cm EPS WLG 035, 5cm Estrich
- Dämmung in Dach: 24cm WLG 035 (Sparren- zu Gefachanteil: 10%); Decke 14cm WLG 035
- 47cm Außenwand: 17.5cm Porenbeton, 14cm WLG 035, 4cm Luft, 11.5cm Verblender


ANLAGENTECHNIK

- Heizungsanlage: Gas-Brennwerttherme (innerhalb thermischer Hülle)
 - --> Vaillant ecoTECplus VC 126/3-5
- Einzelfeuerstätte: Kaminofen (Holz) mit 10% angesetzt für EnEV (nicht für KfW)
- Warmwasserbereitung, Speicher, indirekt beheizt
 - --> Vaillant uniSTOR VIH R150
- Lüftung: Lüftungsanlage mit Wärmerückgewinnung
 - --> Vaillant recoVAIR VAR 275/3


Inhaltsverzeichnis

Energieeinsparnachweis	27
Lageskizze	
Systemgrenzskizze	30
Tabelle der verwendeten Bauteile	31
ENERGIEBILANZ	32
Endergebnis der EnEV-Berechnung	32
Effizienzlevel	33
Endenergieverteilung	32
Randbedingungen	32
Sommerlicher Wärmeschutz:	34
Anforderungen an die Dichtheit:	34
Luftdichtheitsprüfung nach Fertigstellung:	35
Gewinne und Verluste im einzelnen	35
Volumen und Flächen	35
allgemeine Projektdaten	36
Luftvolumenberechnung	36
Nutzflächenberechnung	
interne Wärmegewinne pauschaler Ansatz	37
Wärmebrücken pauschal ohne weiteren Nachweis	
Luftwechsel	37
Klimaort	
monatliches Temperaturmittel	
monatliche Strahlungsintensität	38
Ausnutzungsgrad der Gewinne	
monatliche Ausnutzungsgrade	
Warmwasser	
Begrenzung der Leitungsverluste	
Anlagenbewertung nach DIN 4701 Teil 10	40
TRINKWASSERERWÄRMUNG nach DIN 4701 TEIL 10	
HEIZUNG nach DIN 4701 TEIL 10	
LÜFTUNG	
Überprüfung des Mindestwärmeschutz aller Bauteile nach DIN 4108-2 2003-07	
Sommerlicher Wärmeschutz nach DIN 4108-2 2003-07	44
Dampfdiffusionsnachweis	
Bauteilverwendung und Flächenberechnung	
Bauteile der Bauteilart: Wand	
Bauteile der Bauteilart: Decke zum Dachge., Dach	
Bauteile der Bauteilart: Grundfläche, Kellerdecke	
Volumenberechnung des Gebäudes	47
Schichtaufbau und U-Werte der verwendeten Bauteile	
Außenwand	
Außenwand First	
Dach	
Boden auf Erdreich	49

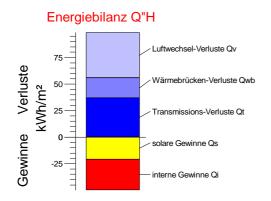
Lageskizze

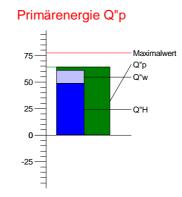
Systemgrenzskizze

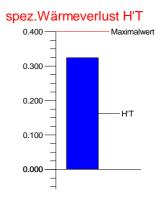
Schnitt

Tabelle der verwendeten Bauteile

	Bauteil	Fläche [m²]	U-Wert * Faktor [W/m²K]	Gewinn [kWh/a]	Verlust [kWh/a]
1	Wand	242.93	0.161	214	3426
2	Fenster, Fenstertüren	58.31	0.990	5817	5063
3	Decke zum Dachge., Dach	153.71	0.176	461	2376
4	Grundfläche, Kellerdecke	145.72	0.074		945
	Summe:	600.67	0.224	6491	11810


Jahresprimärenergiebedarf Q"P = 64.0 [kWh/m²a]


 $Q"Pmax = 77.4 [kWh/m^2a]$


spezifischer Transmissionswärmeverlust $H'T = 0.324 \text{ [W/m}^2\text{K]}$

 $H'Tmax = 0.400 [W/m^2K]$

ENERGIEBILANZ

nutzbare Gewinne		[kWh/a]		Verluste		[kWh/a]			
solare Gewinne η*Q _s	:	5817		Transmission Q _t	:	11810			
interne Gewinne η*Q _i	:	8094		Wärmebrücken Q _{wB}	:	5269			
				Lüftungsverluste Q _v	:	11855			
				Nachtabsenkung Q _{NA}	:	-824			
				solar opake Bauteile Q _{S opak}	:	-675			
		13911				27436			
==> Jahresheizwärmebedarf Q _h 13524 [kWh/a] + Trinkwassererwärmung Q _W 3487 [kWh/a]									

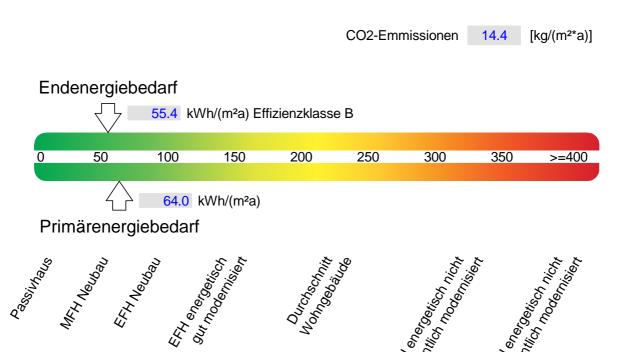
eine Nachtabschaltung wurde : berücksichtigt Anlagenaufwandszahl e_P : 1.049 Nutzfläche : $279.0 \, \mathrm{m}^2$ Gebäudeart : Wohngebäude Jahresheizwärmebedarf Q''_h : $48.48 \, \mathrm{kWh/m}^2 \mathrm{a}$

Endergebnis der EnEV-Berechnung

Jahres-Primärenergiebedarf Q"_P: bezogen auf die Gebäudenutzfläche maximal zulässiger Jahres-Primärenergiebedarf: spezifischer Transmissionswärmeverlust H'_T:

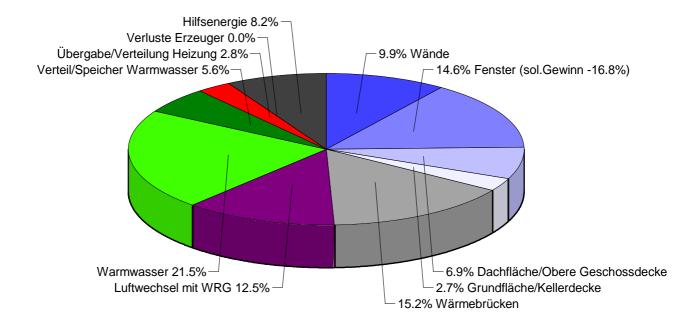
spezifischer Transmissionswarm der Gebäudehüllfläche maximal zulässiger spezifischer Transmissionswärmeverlust: 64.0 [kWh/m²a]

17.3% besser als Neubau


0.324 [W/m²K] 0.400 [W/m²K]

19.0% besser als Neubau

die maximal zulässigen Grenzwerte werden eingehalten.


Effizienzlevel

Grundvariante EFH Bezugsvariante mit dWB=0,10 W/(m²K) [EnEV]

Endenergieverteilung

Endenergieverteilung von EFH Bezugsvariante mit dWB=0,10 W/(m²K) [EnEV]

In der Grafik ist die prozentuale Verteilung der Endenergie zu sehen. Skaliert wurde alles auf den Heizwärmebedarf. Nutzbare interne und solare Wärmegewinne wurden bei den Transmissions- und Lüftungsverlusten berücksichtigt.

Randbedingungen

Sommerlicher Wärmeschutz:

Bei dem Gebäude handelt es sich um ein Ein- oder Zweifamilienhaus, dessen Fenster in Ost-, Süd-, und Westrichtung mit außenliegenden Sonnenschutzvorrichtungen mit einem Abminderungsfaktor Fc<=0,3 ausgestattet werden/sind (Rolläden, Fensterläden, außenliegende Jalousien mit Lamellen oder Stoffe mit geringer Transparenz). Nach DIN 4108-2 2003-07 Absatz 8.3 kann in diesem Fall auf einen detaillierten Nachweis verzichtet werden.

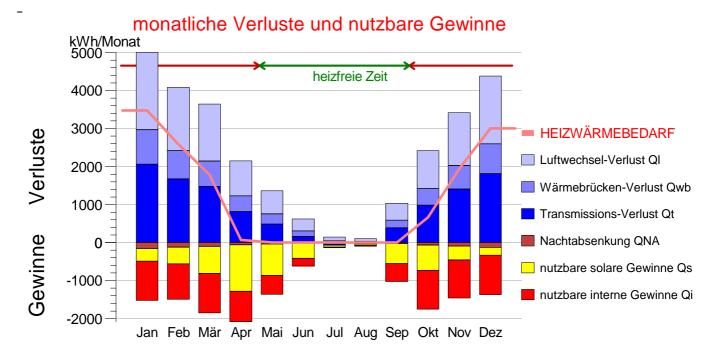
Anforderungen an die Dichtheit:

Außen liegende Fenster, Fenstertüren und Dachflächenfenster müssen den Klassen nach EnEV Anlage 4 Tabelle 1 entsprechen. Für dies Gebäude ist die Klasse 2 der Fugendurchlässigkeit nach DIN EN 12207-1:2000-06 einzuhalten.

Die Luftdichtheit der Wände, des Daches, des unteren Gebäudeabschlusses, der Anschlüsse und Fugen muss nach den anerkannten Regeln der Technik gewährleistet werden (§6 der Energieeinsparverordnung).

Luftdichtheitsprüfung nach Fertigstellung:

Die Überprüfung der Dichtheit erfolgt nach §6 Abs. 1 der EnEV nach Fertigstellung des Gebäudes. Es darf der nach DIN EN 13829:20001-2 gemessene Volumenstrom, bei einer Druckdifferenz von 50 Pa, den Wert 1.5 1/h nicht überschreiten. Der Luftdichtheitsnachweis (Messprotokoll) wird diesem Dokument später beigefügt!


Gewinne und Verluste im einzelnen

kWh/Monat	Jan	Feb	März	April	Mai	Juni	Juli	Aug	Sep	Okt	Nov	Dez	gesamt
Ausnutzgrad η	1.000	1.000	0.999	0.792	0.479	0.203	0.022	0.025	0.470	0.985	1.000	1.000	
Q verlust	4851	3964	3538	2090	1327	602	70	64	1003	2353	3321	4252	27436
Q Gewinn	1375	1381	1755	2553	2767	2961	3111	2542	2131	1719	1371	1250	24918
η * Q Gewinn	1375	1381	1754	2022	1327	602	70	64	1002	1693	1371	1250	13911
$Q_{h \cdot M}$	3476	2583	1784	68	0	0	0	0	0	660	1950	3002	13524
Verluste im einzelnen	Verluste im einzelnen aufgeschlüsselt												
QT	2034	1665	1493	921	611	320	100	70	446	992	1386	1773	11810
Q _S opak	-24	-7	17	106	130	161	169	103	61	12	-18	-35	675
Q _{NA Nachtabs} .	155	121	101	60	40	21	7	5	29	65	93	127	824
$Q_{T}\text{-}Q_{NA}\text{-}Q_{Sopak}$	1903	1550	1374	755	441	138	-75	-37	356	915	1311	1681	10312
QwB	907	743	666	411	273	143	45	31	199	442	618	791	5269
$Q_{\rm L}$	2041	1671	1498	924	613	321	101	70	448	995	1392	1780	11855
Gewinne im einzelnen aufgeschlüsselt													
Q_{S}	337	444	717	1549	1729	1957	2074	1504	1127	682	367	212	12700
Qi	1038	937	1038	1004	1038	1004	1038	1038	1004	1038	1004	1038	12218
Die äquivalente Heizgradtagezahl ermittelt aus dem energetischen Niveau des Gebäudes													
Heiz-Gt	629	515	462	285	0	0	0	0	0	307	429	549	3176

Volumen und Flächen

Fensterfläche A_W : 58.3 m²

Fensterflächenanteil f : 12.8 % (nach EnEV 2002-2007 Anhang 1 Absatz 2.8)

allgemeine Projektdaten

 $Temperatur \ Warmseite \ \vartheta_i \\ \hspace{2cm} : 19^{\circ}C \ (normale \ Innenraum temperatur >= 19 \ ^{\circ}C \ nach \ Anhang \ 1 \ der \ EnEV)$

Gebäudeart : Wohngebäude
Warmwasseraufbereitung : zentral
Bauart : ein Massivbau
das Gebäude ist : ein Neubau

das Gebäude ist um : 0.0° aus der Nord-Süd-Richtung gedreht.

Luftvolumenberechnung

Gebäudeart : es handelt sich um ein Gebäude mit bis zu drei Vollgeschossen und nicht

mehr als zwei Wohnungen oder um ein Ein- oder Zweifamilienhaus bis zu

2 Vollgeschossen und nicht mehr als 3 Wohneinheiten

Gebäudevolumen V_e : 871.7 m^3

Luftvolumen : 662.5 m³ 0,76 * Gebäudevolumen

Nutzflächenberechnung

Gebäudehöhe : 8.50 m Geschoßanzahl : 2 Gebäudegrundfläche : 145.7 m² Grundflächenumfang : 52.9 m

Gebäudenutzfläche : 279.0 m² 0.32 * Gebäudevolumen

interne Wärmegewinne pauschaler Ansatz

in Wohngebäuden 24h/Tag 5W/m² 120 Wh/m² pro Tag bei einer Nutzfläche von 279 m² ==> 33 kWh/Tag

 $Q_i = 12218 \text{ kWh/a} \qquad [1004 \text{ kWh/Monat}]$

davon nutzbare Wärmegewinne Q_i= 8094 kWh/a

Wärmebrücken pauschal ohne weiteren Nachweis

Bei der Berechnung des Verlustes durch die Wärmebrücken wurde bei jedem verwendeten Bauteil ein Aufschlag auf den U-Wert von 0,1 W/m²K, berücksichtigt. Dabei wurden 0.0 m² Oberfläche ausgenommen (z.B.Vorhangfassade).

Duber warden 0.0 in Oberriache ausgenommen (2.D. vornangrassade).

ursprünglicher mittlerer U-Wert $0.224~W/m^2K$ [Abminderungsfaktoren sind berücksichtigt] neuer mittlere U-Wert $0.324~W/m^2K$

Transmissionsverlust erhöht sich um

44.61 %

 $Qwb = 5269 \, kWh/a$

Luftwechsel

Lüftungsverluste Q_v 11855 kWh/a

 $\begin{array}{ll} \text{Luftvolumen:} & 662.5 \text{ m}^3 \\ \text{Luftwechselrate:} & 0.60 \text{ h}^{-1} \end{array}$

Art der Lüftung: maschinelle Lüftung mit Wärmetauscher

 $\begin{array}{lll} \mbox{Nutzungsfaktor des Abluft-Zuluft-W\"{a}rmetauschersystems} \ \eta_{v} : & 0 \ \% \\ \mbox{Anlagenluftwechsel} \ n_{Anl} : & 0.40 \ h^{-1} \\ \mbox{Luftwechsel infolge Undichtheiten inkl. Fenster\"{o}ffnungen} \ n_{x} : & 0.20 \ h^{-1} \end{array}$

Die genaue Berechnung der Lüftungsanlage erfolgt über die DIN 4701-10 Anlagenverordnung, dort werden auch mögliche Wärmerückgewinne berücksichtigt.

Die Luftwechselverluste des Gebäudes sind weiterhin über die DIN 4108-06 zu berücksichtigen.

Luftwechselverluste in kWh

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
2041	1671	1498	924	613	321	101	70	448	995	1392	1780

Klimaort

Es wurden Solar- und Klimadaten vom "mittleren Standort Deutschland " verwendet.

Solar-Referenzort: mittlerer Standort Deutschland Temperatur-Referenzort: mittlerer Standort Deutschland

monatliches Temperaturmittel

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
-1.3	0.6	4.1	9.5	12.9	15.7	18.0	18.3	14.4	9.1	4.7	1.3

monatliche Strahlungsintensität

	Strahlungsintensitäten die für die Berechnung benötigten Richtungen und Neigungen in W/m²												
Richtung	Neig.	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Süd-Ost	90°	44	52	70	140	132	146	153	120	109	69	44	26
West	30°	33	51	78	181	199	238	240	170	129	72	38	21
West	90°	25	37	53	125	131	150	156	115	90	51	28	15
Nord-Ost	30°	22	39	63	151	180	222	221	150	105	57	28	16
Nord-Ost	90°	14	25	38	89	105	124	128	90	62	35	18	10
Nord	90°	14	23	34	64	81	99	100	70	48	33	18	10

Ausnutzungsgrad der Gewinne

Für die Berechnung des Ausnutzungsgrades η solarer und interner Wärmegewinne wurde der vereinfachte Ansatz verwendet.

die Bauart ist: ein Massivbau Speicherfähigkeit: 50.00 Wh/m³K Volumen: 872 m³ C_{wirk} : 43587 Wh/K spezifischer Wärmeverlust H: 330 W/K

monatliche Ausnutzungsgrade

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
1.000	1.000	0.999	0.792	0.479	0.203	0.022	0.025	0.470	0.985	1.000	1.000

Warmwasser

Warmwasser pauschal (12,5KWh/m²a)

Energiebedarf für die Warmwasseraufbereitung $Q_{\rm w}~3487~kWh/a$

Begrenzung der Leitungsverluste

Die Wärmeabgabe der Wärme- und Warmwasserverteilungsleitungen ist gem. § 14 Abs.5 i.V.m.Anhang 5 EnEV wie folgt zu begrenzen:

Die Wallieueg	abe der Wärme- und Warmwasserverteilungsleitungen ist gem. § 14 Abs.5 i.V.m.Anhang 5 Er	Mindestdicke der Dämm-
		schicht, bezogen auf eine
	Art der	Wärmeleitfähigkeit von
7.11		č
Zeile	der Leitungen/Armaturen	0,035
		W/(m ² .K)
1	Innendurchmesser bis 22 mm	20 mm
2	Innendurchmesser über 22 mm bis 35 mm	30 mm
3	Innendurchmesser über 34 mm bis 100 mm	gleich Innendurchmesser
4	Innendurchmesser über 100 mm	100 mm
	Leitungen und Armaturen nach den Zeilen 1 bis 4 in	
	Wand- und Deckendurchbrüchen, im	
5	Kreuzungsbereich von Leitungen, an	1/2 der Anforderungen
	Leitungsverbindungsstellen, bei zentralen	der Zeilen 1 bis 4
	Leitungsnetzverteilern	
	Leitungen von Zentralheizungen nach den Zeilen 1	
6	bis 4, die nach dem 31.Januar 2002 in	1/2 der Anforderungen
	Bauteilen zwischen beheizten Räumen	der Zeilen 1 bis 4
	verschiedener Nutzer verlegt werden.	
7	Leitungen nach Zeile 6 im Fußbodenaufbau	6 mm
	Kälteverteilungs- und Kaltwasserleitungen	
8	sowie Armaturen von Raumlufttechnik- und	6 mm
	Klimakältesystemen	

Anlagenbewertung nach DIN 4701 Teil 10

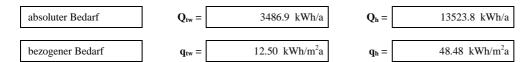
für ein Gebäude mit normalen Innentemperaturen

Bezeichnung des Gebäudes: EFH Eilers / Wingbermühle

Ort: 26127 Oldenburg

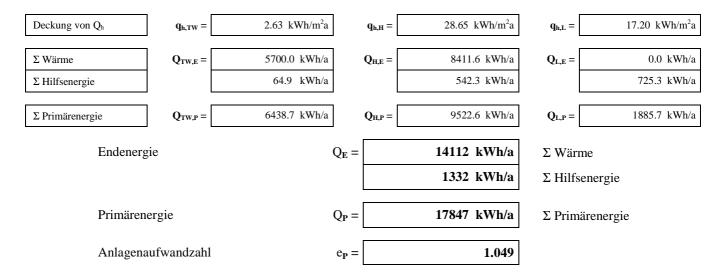
Straße/Nr.:Le-Corbusier-Str. 34

Gemarkung: Eversten, Flur 18


Flurstücknummer: 149/25

I.Eingaben

Trinkwasser- Heizung Lüftung


Erwärmung

II.Systembeschreibung

Details siehe Trinkwasser- Heizungs- und Lüftungsbeschreibung

III.Ergebnisse

Bereich 1:		Anteil 100.0 %		Nutzfläche 279.0 m ²		
		Wärmeverlust		Hilfsenergie		Heizwärmegutschrifte
Verlust aus EnEV:	$q_{\rm tw} = \left[{1}}\right.$	12.50 kWh/m²a				
Übergabe:	$q_{TW,ce} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$0.00 \text{ kWh/m}^2\text{a}$	$q_{\text{TW,ce,HE}} =$	0.00 kWh/m ²	$q_{h,TW,ce} =$	0.00 kWh/m²a
Verteilung:	$q_{TW,d} = \\$	3.41 kWh/m ² a	$q_{\mathrm{TW,d,HE}} =$	0.00 kWh/m ²	$q_{h,TW,d} =$	1.54 kWh/m ² a
Verteilungsart: Verteilung des Trinkwassers i die Stichleitungen werden nic			_		0 m² Nutzfläche)	
Speicherung:	$q_{\mathrm{TW},s} =$	$2.47 \text{ kWh/m}^2\text{a}$	$q_{\text{TW},s,\text{HE}} =$	0.05 kWh/m ²	$q_{h,TW,s} =$	1.08 kWh/m ² a
Speicherart: der Speicher steht innerhalb d		indirekt beheizter Speiche en Hülle	r (z.B. durch die G	ebäudeheizanlage)	_	
Wärmeerzeuger:	$\Sigma =$	18.37 kWh/m ² a	$q_{\text{TW,g,HE}} =$	$0.18 \text{ kWh/m}^2\text{a}$		
Wärmeerzeugerart: Energieträgerart:	_	Brennwertkessel"verbesse Erdgas H	rt" (BDH-Produkt	kennwerte)	<u> </u>	
Deckungsanteil Aufwandzahl Erzeuger		$lpha_{ m TW,g}$:		100.0 1.112	%	
Endenergie Erzeuger		$e_{\mathrm{TW,g}}$: $q_{\mathrm{TW.E}}$:		20.43	kWh/m²a	
Primärenergiefaktor Erzeuger		$f_{p,i}$:		1.10		
Primärenergie Erzeuger		$q_{\mathrm{TW,P}}$:		22.48	kWh/m²a	
Hilfsenergie:			$\Sigma \; q_{TW,HE,E} =$	0.23 kWh/m ²	² a	
Primärenergiefaktor Hilfsener	gie	$f_{p,H}$:		2.60 0.60	kWh/m²a	
Primärenergie Hilfsenergie		$q_{\text{TW},\text{HE},P}$:		0.60	kwn/m a	
Endergebnis Heizwärn	negutschrift	pro m ² :		$q_{h,TW}$	· =	2.63 kWh/m ²
Wärmeendenergie pro m ²		$^{q}_{\mathrm{TW,E}}$:		20.43 kWh/m ²	² a	
Hilfsendenergie pro m ²		q _{TW,HE,E} :		0.23 kWh/m ²	² a	
Primärenergie pro m ²		$^{\mathrm{q}}_{\mathrm{TW,P}}$:		23.08 kWh/m ²	² a	
Wärmeendenergie		$Q_{TW,E}$:		5700.0 kWh	/a	
Hilfsendenergie		$Q_{TW,E}$:		64.9 kWh	/a	
Primärenergie		$Q_{\mathrm{TW},\mathrm{P}}$:		6438.7 kWh	,	

Bereich 1:		Anteil 100.0	%]	Nutzfläche 279.0	m^2	
		Wärmev	erlust		Hilfse	energie	
Heizwärmebedarf	$q_h =$	48.48	kWh/m²a				
Heizwärmegutschriften	q _{h,TW} =	2.63	kWh/m²a	vom Trinl	cwasser		
Ieizwärmegutschriften	$q_{h,L} =$	17.20	kWh/m²a	durch die	Lüftungsanlage		
Übergabe:	$q_{c,e} =$	1.10	kWh/m²a	$q_{ce,HE} =$	0.00	kWh/m²a]
-	zung: integrier				veipunktregler Sc	haltdiff. 1°	K
Verteilung:	$q_d = $	Ĭ	kWh/m ² a	$q_{d,HE} =$	1.49	kWh/m²a	1
erteilungsart: e horizontale Verteilung der W erteilungsstränge (vertikal) bef ir die Verteilung der Heizungsv	ärme erfolgt ir inden sich inne	erhalb der therm	rmischen F nischen Hül	Hülle le			-
peicherung:	$q_s =$		kWh/m²a	$q_{s,HE} =$	0.00	kWh/m²a	
peicherart:		eine Speicherun			0.50.1777./.2		7
Värmeerzeuger:	$\Sigma = $		kWh/m ² a	$q_{g,HE} =$	0.50 kWh/m ² a		
färmeerzeugerart: nergieträgerart:		rennwertkesser rdgas H	verbessert	" (BDH-Produkt	kennwerte)		
eckungsanteil		C	$\alpha_{\text{H},g}$:		90.0	%	
ufwandzahl Erzeuger			e_g :		0.940		1 7771 /
ndenergie Erzeuger imärenergiefaktor Erzeuger			q_E : f_p :		25.61 1.10		kWh/1
imärenergie Erzeuger			q _P :		28.17		kWh/ı
ärmeerzeuger, der raumluftun	abhängig betrie	ben werden kar		t sich innerhalb d	ler thermischen H	ülle	
Värmeerzeuger:	$\Sigma =$	3.03	kWh/m²a	$q_{\rm g,HE} =$	$0.00 \text{ kWh/m}^2\text{a}$		
ärmeerzeugerart:		inzelfeuerstätte					
nergieträgerart:	aı	usschließliche V		g regenerativer E	nergien (Holz, Ra)
eckungsanteil ıfwandzahl Erzeuger			$\alpha_{H,g}$:		10.0 1.500	%	
ndenergie Erzeuger			e_g :		4.54		kWh/ı
imärenergiefaktor Erzeuger			f_p :		0.20		10 11 11 1
imärenergie Erzeuger			q_P :		0.91		kWh/ı
ilfsenergie:				$\Sigma \; q_{\text{HE,E}} =$	1.94	kWh/m²a	
imärenergiefaktor Hilfsenergie imärenergie Hilfsenergie	2		$f_{p,H}$: $q_{\text{HE},P}$:		2.60 5.05		kWh/ı
ndergebnis							
Värmeendenergie pro m²			q _{H,E} :		30.15	kWh/m²a	1
ilfsendenergie pro m ²		q	H,E · H,HE,E:			kWh/m ² a	
rimärenergie pro m ²			н,не,е · _{Н,НЕ,Р} :			kWh/m²a	
⁷ ärmeendenergie			$Q_{H,E}$:		8411	.6 kWh/a	1
ilfsendenergie			Q _{H,E} :			2.3 kWh/a	-
							_
rimärenergie			$Q_{H,P}$:		9322	2.6 kWh/a	

		LÜ	FTUNG			
Bereich 1:		Anteil 100.0 %	Nutzfläc	he 279.0 m ²		
		Wärmegewinn	7	Värmeverlust		Hilfsenergie
			1			
Übergabe:	$q_{L,ce} =$	-0.00 kWh/m ² a			$q_{L,\text{ce},\text{HE}} =$	$0.00 \text{ kWh/m}^2\text{a}$
Übergabeart: z.B.Lüftungsanlagen mit Wärm Anordnung der Luftauslässe üb	erückgewinnung					
Verteilung:	$q_{L,d} =$	$-0.00 \text{ kWh/m}^2\text{a}$			$q_{L,\text{d},\text{HE}} =$	$0.00 \text{ kWh/m}^2\text{a}$
Verteilungsart:	Verlegun	g der Verteilleitungen im	nerhalb der thermische	n Hülle		
Luftwechselkorrektur:	$q_{h,n} =$	-0.00 kWh/m ² a				
Anlagenluftwechsel: anrechenbare Heizarbeit: (qh-q _I	$_{\rm L,g,WEWRG}$ + $q_{\rm h,n})$			40 1/h (nA, _{norm} =0,4 1.3 kWh/m ² a	1/h)	
Ez WRG mit WÜT :	$q_{L,g,WRG} \\$	17.20 kWh/m ² a			$q_{L,g,\text{HE},\text{WRG}}$	2.60 kWh/m ² a
Erzeugerart:	Abluft/Zuluft V	Värmeübertrager zentral,	Wirkungsgrad >=80% เ	and DC-Ventilatoren		
Erzeuger L/L-WP:	$q_{L,g,WP} \\$	$0.00 \text{ kWh/m}^2\text{a}$	$q_{L,g,WP0}.00 \text{ kWh/m}^2 \text{a}$	$q_{L,g,\text{HE},\text{WP}}$		$0.00 \text{ kWh/m}^2\text{a}$
Erzeugerart:	keine Wärmepu	impe				
Erzeuger Heizregister:	$q_{L,g,HR}$	$0.00 \text{ kWh/m}^2\text{a}$	$q_{L,g,HR0}.00 \text{ kWh/m}^2 \text{a}$	$q_{L,\mathrm{g},\mathrm{HE},\mathrm{HR}}$		$0.00 \text{ kWh/m}^2\text{a}$
Erzeugerart:	kein Heiz	zregister				
Hilfsenergie:					$\Sigma \; q_{L,HE,E} =$	2.60 kWh/m ² a
Primärenergiefaktor Hilfsenergie Primärenergie Hilfsenergie	ie	$f_{ extsf{p}, ext{H}}$: $q_{ extsf{A}, ext{HE}, extsf{P}}$:		2.60 6.76 kWh/m²a		
Endergebnis						
Lüftungsbeitrag am Q _h :	$q_{h,L} =$	17.20 kWh/m²a				
Wärmeendenergie pro m ²		$^{q}_{L,E}$:		0.00 kWh/m ² a		
Hilfsendenergie pro m ²		$^{\mathrm{q}}_{\mathrm{L},\mathrm{HE,E}}$:		$2.60 \text{ kWh/m}^2\text{a}$		
Primärenergie pro m²		$^{q}_{L,HE,P}$:		6.76 kWh/m ² a		
Wärmeendenergie		$Q_{L,E}$:		0.0 kWh/a		
Hilfsendenergie		$Q_{L,E}$:		725.3 kWh/a		
Primärenergie		$Q_{L,P}$:		1885.7 kWh/a		

Überprüfung des Mindestwärmeschutz aller Bauteile nach DIN 4108-2 2003-07

Bauteil	Flächen-	Innen-	R	Grenz-	Art	Ergebnis
	gewicht	raum-		wert		
	kg/m²	temp	m²K/W	m²K/W		
Außenwand	356.6	normal	6.07	1.20	*1	OK
Außenwand First	100.4	normal	2.17	1.20	*1	OK
Dach	86.6	normal	6.95	1.75	*8	OK
Boden auf Erdreich	572.3	normal	6.59	0.90	*1	OK

Art der Berechnung: nach DIN 4108-2:2003-07:

Sommerlicher Wärmeschutz nach DIN 4108-2 2003-07

Bei dem Gebäude handelt es sich um ein Ein- oder Zweifamilienhaus, dessen Fenster in Ost-, Süd-, und Westrichtung mit außenliegenden Sonnenschutzvorrichtungen mit einem Abminderungsfaktor Fc<=0,3 ausgestattet werden/sind (Rolläden, Fensterläden, außenliegende Jalousien mit Lamellen oder Stoffe mit geringer Transparent) .Nach DIN 4108-2 2003-07 Absatz 8.3 kann in diesem Fall auf ein detaillierten Nachweis verzichtet werden.

Dampfdiffusionsnachweis

Bauteil	Fall R-Type	Tauw. kg/m²	Verd. kg/m²	Rest kg/m²	Schicht	OK
Außenwand	D 1	0.666	0.534	0.132	3-4	nicht OK
Außenwand First	D 1	1.016	0.489	0.527	2-3	nicht OK
Balkenbereich	D 1	0.079	0.058	0.022	2-3	nicht OK
Dach	B 3	0.006	0.006		3/4	OK
Balkenbereich	В 3	0.005	0.006		3/4	OK
Randbedingungen der Dampfdiffusion	sherechnung					
Randbedingungen der Dampfdiffusion R-Type	sberechnung °C warm	°C kalt	% warm	% kalt	Stunden	°C Dach
	C	°C kalt	% warm	% kalt	Stunden	°C Dach
R-Type	C	°C kalt	% warm 50	% kalt 80	Stunden 1440	°C Dach
R-Type Type 1 normale Außenwand	°C warm					°C Dach
R-Type Type 1 normale Außenwand Tauperiode	°C warm	-10	50	80	1440	°C Dach
R-Type Type 1 normale Außenwand Tauperiode Verdunstungsperiode	°C warm	-10	50	80	1440	°C Dach

^{*1} Tabelle 3, normale Bauteile >=100kg/m²

^{*8} Gefachbauteil mit weniger als 100 kg Flächengewicht

Bauteilverwendung und Flächenberechnung

Bauteile der Bauteilart: Wand

Bauteil/Einsatzart	U-Wert	Fläche
normale Außenwand beheizter Räume $Faktor = 1.00 R_{Si} = 0.13 R_{Se} = 0.04 R = 6.07$ Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = 158° SSO Neig = 90° senkrecht Außenwand Bez.: AwSüdost 78,39	0.16 W/m²K	78.39 m²
"Eigene Fenster" Haustür B x H : 1.64 m x 2.26 m 1 Stück 3.71 m ² Glas+Ra. : U-Wert = 1.70 W/m ² K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S = 0.900 F_F = 0.700 F_C = 1.000	1.70 W/m ² K	-3.71 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,51*1,01} \\ \text{B x H}: \ 1.01 \text{ m x 1.51 m} \ 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.88 \text{ W/m}^2\text{K (Herstellerangabe)} \ \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_\text{S}{=}0.900 \ F_\text{F}{=}0.700 \ F_\text{C}{=}1.000 \ \text{sommerlicher Sonnenschutz} \ R_\text{e}{=}0.60 \ T_\text{e}{=}0.25 \\ \end{array} $	0.88 W/m ² K	-1.53 m ²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 2,26*1,01} \\ \text{B x H}: \ 1.01 \text{ m x 2.26 m} \ 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.87 \text{ W/m}^2\text{K (Herstellerangabe)} \ \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_\text{S}{=}0.900 \ F_\text{F}{=}0.700 \ F_\text{C}{=}1.000 \ \text{sommerlicher Sonnenschutz} \ R_\text{e}{=}0.60 \ T_\text{e}{=}0.25 \\ \end{array} $	0.87 W/m ² K	-2.28 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,32*1,64} \\ \text{B x H}: & 1.64 \text{ m x 1.32 m} & 1 \text{ Stück} \\ \text{Glas+Ra.} & : \text{U-Wert} = 0.85 \text{ W/m²K (Herstellerangabe)} & \text{g-Wert} = 50 \% \\ \text{Verschattung: } & F_{\text{S}} = 0.900 & F_{\text{F}} = 0.700 & \text{Fc} = 1.000 & \text{sommerlicher Sonnenschutz} & R_{\text{e}} = 0.60 & T_{\text{e}} = 0.25 \\ \end{array} $	0.85 W/m²K	-2.16 m ²
normale Außenwand beheizter Räume	1	001/1 III
Faktor = 1.00 R _{Si} = 0.13 R _{Se} = 0.04 R = 6.07 Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80	1	
Richt. = -113° WSW Neig = 90° senkrecht Außenwand Bez.: AwSüdWest 49,05	$0.16~\mathrm{W/m^2K}$	49.05 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 2,26*2,01} \\ \text{B x H}: \ \ 2.01 \ \text{m x 2.26 m} \ \ 2 \ \text{Stück} \\ \text{Glas+Ra.} \qquad : \ \text{U-Wert} = 0.81 \ \text{W/m}^2 \text{K (Herstellerangabe)} \ \ \text{g-Wert} = 50 \ \% \\ \text{Verschattung:} \ \ F_\text{S}{=}0.900 \ \ F_\text{F}{=}0.700 \ \ F_\text{C}{=}1.000 \ \ \text{sommerlicher Sonnenschutz} \ \ R_\text{e}{=}0.60 \ \ T_\text{e}{=}0.25 \\ \end{array} $	0.81 W/m ² K	-9.09 m²
"Eigene Fenster" $ Ug = 0.7 / Uf = 1.0 \dots 2.26*3.01 $ B x H : 3.01 m x 2.26 m 1 Stück 6.80 m² Glas+Ra. : U-Wert = 0.79 W/m²K (Herstellerangabe) g-Wert = 50 % Verschattung: $F_s = 0.900 \ F_F = 0.700 \ F_C = 1.000 \ sommerlicher Sonnenschutz \ R_e = 0.60 \ T_e = 0.25 $	0.79 W/m²K	-6.80 m²
		33.16 m ²

normale Außenwand beheizter Räume

21	1	201/
ZI.	Januar	2014

BV Einfamilienhaus - Le-Corbusier-Str. 34 - 26127 Oldenburg	21. Januar 2014	
Faktor = 1.00 R_{Si} = 0.13 R_{Se} = 0.04 R = 5.80 Strahlungsabsorbtionsgrad α = 0.50 heller Anstrich (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = -113° WSW Neig = 90° senkrecht Außenwand First Bez.: AwSüdWest2 22,22 Flächenanteil des Feldbereiches 90.00 %	0.17 W/m²K	22.22 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 0,69*1,01} \\ \text{B x H}: 1.01 \text{ m x 0.69 m} 3 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.96 \text{ W/m}^2\text{K (Herstellerangabe)} \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung:} F_S = 0.900 F_F = 0.700 F_C = 1.000 \text{sommerlicher Sonnenschutz} R_e = 0.60 T_e = 0.25 \\ \end{array} $	0.96 W/m²K	-2.09 m²
		20.13 III
normale Außenwand beheizter Räume $Faktor = 1.00 R_{Si} = 0.13 R_{Se} = 0.04 R = 6.07$ Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = -23° NNW Neig = 90° senkrecht		
Außenwand Bez.: AwNordwest	$0.16~\mathrm{W/m^2K}$	78.39 m ²
78,39 "Eigene Fenster" $Ug=0,7 \ / \ Uf=1,0 \ \ 1,32*1,01$ B x H: 1.01 m x 1.32 m 2 Stück	0.89 W/m²K	-2.67 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,32*1,64} \\ \text{B x H}: \ \ 1.64 \text{ m x 1.32 m} \ \ 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert=0.85 W/m²K (Herstellerangabe)} \ \ \text{g-Wert=50 \%} \\ \text{Verschattung: } \ F_{\text{S}}\text{=0.900} \ \ F_{\text{F}}\text{=0.700} \ \ F_{\text{C}}\text{=1.000} \ \ \text{sommerlicher Sonnenschutz} \ \ R_{\text{e}}\text{=0.60} \ \ T_{\text{e}}\text{=0.25} \\ \end{array} $	0.85 W/m²K	-2.16 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 2,26*1,64} \\ \text{B x H}: & 1.64 \text{ m x 2.26 m} & 1 \text{ Stück} \\ \text{Glas+Ra.} & : \text{U-Wert} = 0.82 \text{ W/m}^2\text{K (Herstellerangabe)} & \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_S = 0.900 F_F = 0.700 F_C = 1.000 \text{ sommerlicher Sonnenschutz } R_e = 0.60 T_e = 0.25 \\ \end{array} $	0.82 W/m²K	-3.71 m ²
		07.83 III
normale Außenwand beheizter Räume $Faktor = 1.00 R_{Si} = 0.13 R_{Se} = 0.04 R = 6.07$ Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = 68° ONO Neig = 90° senkrecht Außenwand Bez.: AwNordOst 59,23	$0.16~\mathrm{W/m^2K}$	59.23 m²
"Eigene Fenster" Nebentür B x H : 1.01 m x 2.26 m 1 Stück 2.28 m² Glas+Ra. : U-Wert = 1.70 W/m²K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 sommerlicher Sonnenschutz F_C =0.60 F_C =0.50	1.70 W/m²K	-2.28 m²
"Eigene Fenster" $ Ug=0,7 \ / \ Uf=1,01,32*0,89 \\ B \ x \ H: 0.89 \ m \ x \ 1.32 \ m 5 \ Stück \\ Glas+Ra. : U-Wert = 0.91 \ W/m^2K \ (Herstellerangabe) \ g-Wert = 50 \ \% \\ Verschattung: \ F_s=0.900 \ F_r=0.700 \ F_c=1.000 \ sommerlicher Sonnenschutz \ R_r=0.60 \ T_r=0.25 $	0.91 W/m ² K	-5.87 m²
6. 3 aver -1 aver -0 -1010 assessment Someone at 16 0.00 16 0.00		51.07 m ²
	·	

Bauteile der Bauteilart: Decke zum Dachge., Dach

Bauteil/Einsatzart U-Wert Fläche

Dach/Decke gegen Außenluft

Faktor = $1.00 R_{Si} = 0.10 R_{Se} = 0.04 R = 5.54$ Strahlungsabsorbtionsgrad α = 0.80 dunkle Oberfläche (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = -113° WSW Neig = 32° Bez.: DaSüdWest 0.18 W/m²K 66.76 m² 66,76 Flächenanteil des Feldbereiches 90.00 % "Eigene Fenster" Ug=0,6 Uf=1,7 ... Dachverglasung 0.96 W/m2K -9.16 m² B x H: 0.83 m x 3.68 m 3 Stück : U-Wert = 0.96 W/m²K (Herstellerangabe) g-Wert = 49 % Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 sommerlicher Sonnenschutz R_e =0.30 T_e =0.25 "Dachfenster" zertifiziertes Dachfenster 1,3 1.30 W/m²K -2.10 m² B~x~H:~0.75~m~x~1.40~m~~2~Stück2.10 m² : U-Wert = 1.30 W/m²K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 sommerlicher Sonnenschutz R_e =0.30 T_e =0.25 55.50 m² Dach/Decke gegen Außenluft $Faktor = 1.00 \quad R_{Si} = 0.10 \quad R_{Se} = 0.04 \quad R = 5.54$ Strahlungsabsorbtionsgrad α = 0.80 dunkle Oberfläche (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = 68° ONO Neig = 28° Bez.: DaNordOst $0.18~W/m^2K$ 100.91 m² Flächenanteil des Feldbereiches 90.00 % 90 "Dachfenster" zertifiziertes Dachfenster 1,3 1.30 W/m²K -2.70 m² B x H: 0.75 m x 1.20 m 3 Stück 2.70 m² : U-Wert = 1.30 W/m²K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 sommerlicher Sonnenschutz R_e =0.30 T_e =0.25 98.21 m²

Bauteile der Bauteilart: Grundfläche, Kellerdecke

Bauteil/Einsatzart		U-Wert	Fläche
gedämmte Fußböden beheizter Aufenthaltsr. auf dem Erdreich Faktor = 0.50 keine Randdämmung B'=5.5 m $R_{Si} = 0.17$ $R_{Se} = 0.00$ Richt. = 0° Neig = 0° waagerecht	R = 6.59		
Boden auf Erdreich 145,72	Bez.: Grundfläche	$0.15~\mathrm{W/m^2K}$	145.72 m²
			145.72 m²

Volumenberechnung des Gebäudes

 $= 871.7 \text{ m}^{3}$ $= 871.7 \text{ m}^{3}$ $= 871.7 \text{ m}^{3}$

Schichtaufbau und U-Werte der verwendeten Bauteile

222.80 m² $U-Wert = 0.160 \text{ W/m}^2\text{K}$ Außenwand Dichte Dicke R Diff. - Wid. λ $[m^2K/W]$ [W/mK] Material $[kg/m^3]$ s [mm] Luftübergang Warmseite R_{Si} 0.13 1 Kalkzementputz 1800.0 15.00 0.870 0.017 15 / 35 2 Ytong-Planblock PPW2-0,40 500.0 175.00 0.1001.750 5 3 Glaswolle 035 D 250.0 140.00 0.035 4.000 1 4 Luft ruhend horizontal 40.00 0.222 0.180 1.3 5 Vollklinker 50 / 100 1800.0 115.00 0.910 0.126Luftübergang Kaltseite R_{Se} 0.04 Bauteildicke = 485.00 mm Flächengewicht = 356.6 kg/m² $R = 6.07 \text{ m}^2\text{K/W}$ Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 Tabelle 3, normale Bauteile (>=100kg/m²): Einsatzart: normale Außenwand beheizter Räume : 356.6 kg/m^2 zur Berechnung herangezogenes Flächengewicht R an der ungünstigsten Stelle : 6.074 $m^2 K/W$ Grenzwert (Mindestwert) für R : 1.200 m^2K/W

Außenwand First		20.13 m²	U-Wert = 0.1	68 W/m²K
Das Baute Dichte	eil besitzt 2 Schichtb Dicke λ	ereiche R	Diff Wid.	

		Das Baı	iteil besitzt 2 S	chichtbereiche		
		Dichte	Dicke	λ	R	Diff Wid.
Material		$[kg/m^3]$	s [mm]	[W/mK]	$[m^2K/W]$	
Aufbau des Feldbereichs	90.0 %					
Luftübergang Warmseite R _{Si} 0.13						
F1 OSB-Platten		650.0	20.00	0.130	0.154	30 / 50
F2 Glaswolle 035		250.0	240.00	0.035	6.857	1
F3 Fichte, Kiefer, Tanne	D	600.0	20.00	0.130	0.154	40
F4 Abdichtung		1000.0	2.00	0.170	0.012	600000
F5 Zink		7200.0	0.70	110.000	0.000	999999
Luftübergang Kaltseite R _{Se} 0.04						
Aufbau des Balkenbereichs	10.0 %					
Luftübergang Warmseite R _{Si} 0.13						
B1 OSB-Platten		650.0	20.00	0.130	0.154	30 / 50
B2 Fichte, Kiefer, Tanne		600.0	240.00	0.130	1.846	40
B3 Fichte, Kiefer, Tanne	D	600.0	20.00	0.130	0.154	40
B4 Abdichtung		1000.0	2.00	0.170	0.012	600000
B5 Zink		7200.0	0.70	110.000	0.000	999999
Luftübergang Kaltseite R _{Se} 0.04						

U-Wert-Berechnung inhomogener Bauteile nach DIN EN ISO 6946

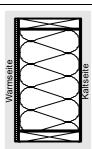
die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

Bauteildicke	Feldanteil	Flächengewicht	U-Wert	R_T	R_{T}	R_T "
282.70 mm	90.0 %	100.4 kg/m^2	$0.168 \text{ W/m}^2\text{K}$	5.97 m ² K/W	$6.05 \text{ m}^2\text{K/W}$	$5.88 \text{ m}^2\text{K/W}$

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 Tabelle 3, normale Bauteile (>=100kg/m²):

Einsatzart: normale Außenwand beheizter Räume

zur Berechnung herangezogenes Flächengewicht : 100.4 kg/m


 $R \ an \ der \ ung \ddot{u}nstigsten \ Stelle \\ \vdots \ 2.166 \\ m^2K/W \ \ (Balkenbereich)$

Grenzwert (Mindestwert) für R : 1.200 m²K/W

die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

	153.71 m²	$U\text{-Wert} = 0.176 \text{ W/m}^2\text{K}$
Dach		

			iteil besitzt 2 S			
M		Dichte	Dicke	λ	R	Diff Wid.
Material		[kg/m³]	s [mm]	[W/mK]	$[m^2K/W]$	
Aufbau des Feldbereichs	90.0 %					
Luftübergang Warmseite R _{Si} 0.10						
F1 Gipskarton DIN 18180	D	900.0	12.50	0.210	0.060	8
F2 Dörken Delta Reflex Plus		1100.0	4.00	0.170	0.024	37500
F3 Glaswolle 035		250.0	240.00	0.035	6.857	1
F4 Dörken Delta Maxx		1000.0	2.50	0.170	0.015	600000
Luftübergang Kaltseite R _{Se} 0.04						
Aufbau des Balkenbereichs	10.0 %					
Luftübergang Warmseite R _{Si} 0.10						
B1 Gipskarton DIN 18180	D	900.0	12.50	0.210	0.060	8
B2 Dörken Delta Reflex Plus		1100.0	4.00	0.170	0.024	37500
B3 Fichte, Kiefer, Tanne		600.0	240.00	0.130	1.846	40
B4 Dörken Delta Maxx		1000.0	2.50	0.170	0.015	600000
Luftübergang Kaltseite R _{Se} 0.04						

U-Wert-Berechnung inhomogener Bauteile nach DIN EN ISO 6946

Bauteildicke Feldanteil Flächengewicht U-Wert R_T R_T' R_T'' R_T'' 259.00 mm 90.0 % 86.6 kg/m² 0.176 W/m²K 5.68 m²K/W 5.72 m²K/W 5.63 m²K/W

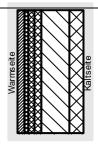
145.72 m²

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 leichte Bauteile (<100kg/m²):

der Wärmedurchlasswiderstand des Feldbereichs und der mittlere Wärmeduchlasswiderstand wurden überprüft

zur Berechnung herangezogenes Flächengewicht : 86.6 kg/m²
R an der ungünstigsten Stelle : 6.955 m²K/W (Feldbereich)
Grenzwert (Mindestwert) für R : 1.750 m²K/W

 Grenzwert (Mindestwert) für R
 : 1.750
 m²K/W


 R gesamte Bauteil (Mittelwert)
 : 5.535
 m²K/W

 Grenzwert (Mindestwert) für das Gesamtbauteil
 : 1.000
 m²K/W

die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

Boden auf Erdreich

Material Luftübergang Warmseite R _{Si} 0.17	Dichte [kg/m³]	Dicke s [mm]	$\lambda \\ [W/mK]$	R [m²K/W]	Diff Wid.
1 Zementestrich D	2000.0	50.00	1.400	0.036	15 / 35
2 EPS 035	20.0	30.00	0.035	0.857	41
3 PUR 024 - beidseitig Alu -	125.0	40.00	0.024	1.667	40 / 200
4 EPS 035	20.0	50.00	0.035	1.429	41
5 Bitumendichtung	1100.0	2.50	0.170	0.015	80000
6 Beton armiert (mit 1% Stahl) D	2300.0	200.00	2.300	0.087	80 / 130
7 XPS 040	30.0	100.00	0.040	2.500	41
Luftübergang Kaltseite R _{Se} 0.00					

 $U\text{-Wert} = 0.148 \text{ W/m}^2\text{K}$

Bauteildicke = 472.50 mm Flächengewicht = 572.3 kg/m^2 R = $6.59 \text{ m}^2\text{K/W}$

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 Tabelle 3, normale Bauteile (>=100kg/m²): Einsatzart: gedämmte Fußböden beheizter Aufenthaltsr. auf dem Erdreich

zur Berechnung herangezogenes Flächengewicht : 572.3 kg/m²
R an der ungünstigsten Stelle : 6.590 m²K/W
Grenzwert (Mindestwert) für R : 0.900 m²K/W

die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

Energieeinsparnachweis

nach der Energieeinsparverordnung EnEV 2009

vom 29.04.2009

KfW-Effizienzhaus 55 (EnEV₂₀₀₉)

öffentlich rechtlicher Nachweis

nach dem "Monatsbilanzverfahren" der DIN V 4108-6:2003-06

und Berechnung der Anlagentechnik nach DIN V 4701-10:2003-08

Projekt Kurzbeschreibung: EFH Eilers / Wingbermühle

Bauvorhaben : Einfamilienhaus (183,6m² Wohnfläche) mit Garage, Baujahr 2011, 26127 OL

H'T=0,324 W/(m²K) mit dWB=0,10 W/(m²K); Gas-Brennwert, Lüftung WRG

Objektstandort Baujahr 2011

Straße/Hausnr.: Le-Corbusier-Str. 34 Plz/Ort : 26127 Oldenburg

Gemarkung : Eversten, Flur 18 Flurstücknummer: 149/25

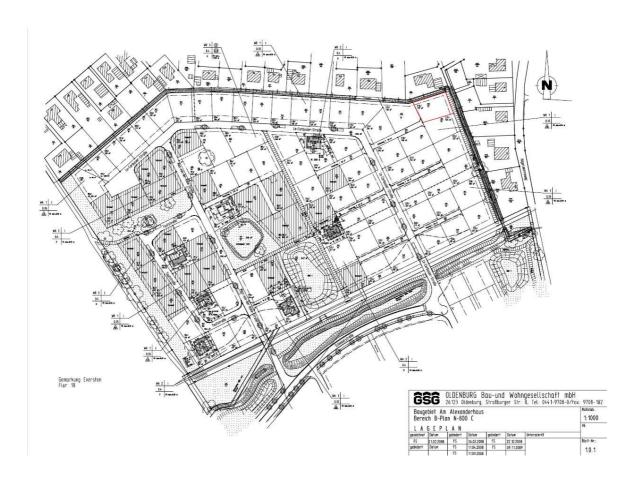
Hauseigentümer/Bauherr

Name/Firma : Jens Eilers, Dagmar Wingbermühle

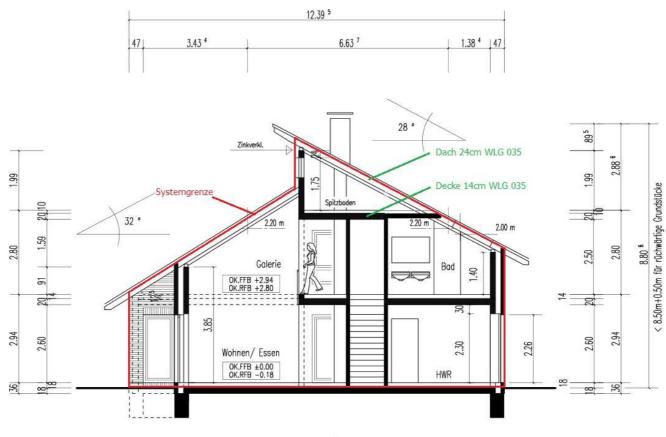
Straße/Hausnr.: Le-Corbusier-Str. 34 Plz/Ort : 26127 Oldenburg Telefon / Fax : 0441-2172990

GEBÄUDEHÜLLE

- Berücksichtigung Wärmebrücken, detailliert: Delta Uwb=0,025 W/(m²K)
- 3-fach-verglaste Fenster mit $Ug=0.7~W/(m^2K)$ und $Uf=1.0~W/(m^2K)$ mit 7cm Rahmen Fenster: Uw nach DIN EN ISO 10077 berechnet
- Dachverglasung mit Ug=0,6W/(m²K), Uw=0,96W/(m²K)
- Dachfenster mit Uw=1,3 W/(m²K)
- alle Fenster verschattet: Alu-Außenrolläden
- Konstruktive Geschoßhöhe hg=2,98m, von OK Rohdecke EG zu OK Rohdecke OG
- Spitzboden innerhalb thermischer Hülle
- Aufbau Bodenplatte:
 - 10cm Perimeterdämmung, 20cm Beton, Abdichtung
 - 5cm EPS WLG 035, 4cm PIR Alu-kaschiert WLS 024, 3cm EPS WLG 035, 5cm Estrich
- Dämmung in Dach: 24cm WLG 035 (Sparren- zu Gefachanteil: 10%); Decke 14cm WLG 035
- 47cm Außenwand: 17.5cm Porenbeton, 14cm WLG 035, 4cm Luft, 11.5cm Verblender


ANLAGENTECHNIK

- Heizungsanlage: Gas-Brennwerttherme (innerhalb thermischer Hülle)
 - --> Vaillant ecoTECplus VC 126/3-5
- Warmwasserbereitung, Speicher, solare Brauchwassernlage
 - --> Vaillant uniSTOR VIH R150
- Lüftung: Lüftungsanlage mit Wärmerückgewinnung
 - --> Vaillant recoVAIR VAR 275/3


Inhaltsverzeichnis

Energieeinsparnachweis	50
Lageskizze	52
Systemgrenzskizze	5′.
Tabelle der verwendeten Bauteile	54
ENERGIEBILANZ	5:
Endergebnis der EnEV-Berechnung	5:
Effizienzlevel	50
Endenergieverteilung	5′
Ergebnisdaten für die KfW-Effizienzhaus-Formulare	58
KfW Effizienzhauslevel	5
Randbedingungen	5
Sommerlicher Wärmeschutz:	
Anforderungen an die Dichtheit:	
Luftdichtheitsprüfung nach Fertigstellung:	
Gewinne und Verluste im einzelnen	
Volumen und Flächen	
allgemeine Projektdaten	60
Luftvolumenberechnung	60
Nutzflächenberechnung	60
interne Wärmegewinne pauschaler Ansatz	
Wärmebrücken detailliert	
Luftwechsel	
Klimaort	
monatliches Temperaturmittel	
monatliche Strahlungsintensität	
Ausnutzungsgrad der Gewinne	
monatliche Ausnutzungsgrade	
Warmwasser	
Begrenzung der Leitungsverluste	
Anlagenbewertung nach DIN 4701 Teil 10	
TRINKWASSERERWÄRMUNG nach DIN 4701 TEIL 10	
HEIZUNG nach DIN 4701 TEIL 10	
LÜFTUNG	
Überprüfung des Mindestwärmeschutz aller Bauteile nach DIN 4108-2 2003-07	
Sommerlicher Wärmeschutz nach DIN 4108-2 2003-07	
Dampfdiffusionsnachweis	
Bauteilverwendung und Flächenberechnung	
Bauteile der Bauteilart: Wand	
Bauteile der Bauteilart: Decke zum Dachge., Dach	
Bauteile der Bauteilart: Grundfläche, Kellerdecke	
Volumenberechnung des Gebäudes	
Schichtaufbau und U-Werte der verwendeten Bauteile	
Außenwand	
Außenwand First	
Dach	
Boden auf Erdreich	7.

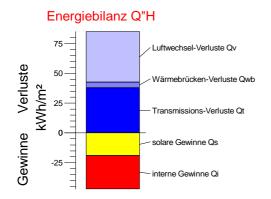
Lageskizze

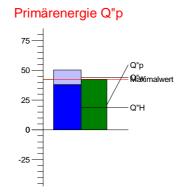
Systemgrenzskizze

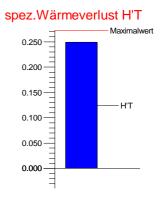
Schnitt

Tabelle der verwendeten Bauteile

	Bauteil	Fläche [m²]	U-Wert * Faktor [W/m²K]	Gewinn [kWh/a]	Verlust [kWh/a]
1	Wand	242.93	0.161	214	3426
2	Fenster, Fenstertüren	58.31	0.990	5366	5063
3	Decke zum Dachge., Dach	153.71	0.176	461	2376
4	Grundfläche, Kellerdecke	145.72	0.074		945
	Summe:	600.67	0.224	6041	11810


Jahresprimärenergiebedarf Q"P = 42.4 [kWh/m²a]


 $Q"Pmax = 42.6 [kWh/m^2a]$


spezifischer Transmissionswärmeverlust $H'T = 0.249 \text{ [W/m}^2\text{K]}$

 $H'Tmax = 0.272 [W/m^2K]$

ENERGIEBILANZ

nutzbare Gewinne	[kWh	a]	Verluste		[kWh/a]	
solare Gewinne η*Q _s	: 53	56	Transmission Q _t	:	11810	
interne Gewinne η*Q _i	: 77	92	Wärmebrücken Q _{WB}	:	1317	
			Lüftungsverluste Q_v	:	11855	
			Nachtabsenkung Q _{NA}	:	-605	
			solar opake Bauteile Q _{S opak}	:	-675	
	131	58			23703	
==> Jahresheizwärmebedarf	Q _h 10532 [kWh/a] + Trin	wassererwäri	mung Q _w 3487 [kWh/a]	•		

eine Nachtabschaltung wurde : berücksichtigt Anlagenaufwandszahl e_P : 0.844 Nutzfläche : $279.0 \, \mathrm{m}^2$ Gebäudeart : Wohngebäude Jahresheizwärmebedarf Q''_h : $37.75 \, \mathrm{kWh/m}^2 \mathrm{a}$

Endergebnis der EnEV-Berechnung

Jahres-Primärenergiebedarf Q"_P: bezogen auf die Gebäudenutzfläche maximal zulässiger Jahres-Primärenergiebedarf:

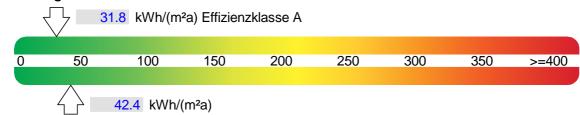
spezifischer Transmissionswärmeverlust H'_T: der Gebäudehüllfläche maximal zulässiger spezifischer Transmissionswärmeverlust:

42.4 [kWh/m²a]
42.6 [kWh/m²a]
77.4 [kWh/m²a]
0.249 [W/m²K]
0.272 [W/m²K]
0.388 [W/m ² K]
0.400 [W/m ² K]

45.2% besser als Neubau

für KfW-Effizienzhaus 55 nach EnEV

37.7% besser als Neubau 35.9% besser Ref-Gebäude für KfW-Effizienzhaus 55 vom Referenzgebäude nach EnEV

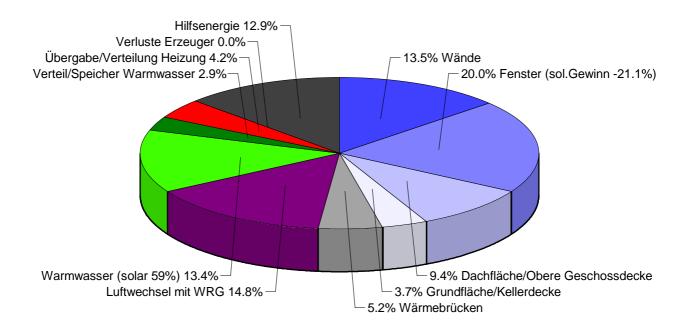

die maximal zulässigen Grenzwerte werden eingehalten.

Effizienzlevel

Optimierungsvariante EFH mit solarer Brauchwasseranlage, dWB=0,025 W/(m²K) [KfW55]

CO2-Emmissionen 9.6 [kg/(m²*a)]

Endenergiebedarf



Primärenergiebedarf

Endenergieverteilung

Endenergieverteilung von EFH mit solarer Brauchwasseranlage, dWB=0,025 W/(m²K) [KfW55]

In der Grafik ist die prozentuale Verteilung der Endenergie zu sehen. Skaliert wurde alles auf den Heizwärmebedarf. Nutzbare interne und solare Wärmegewinne wurden bei den Transmissions- und Lüftungsverlusten berücksichtigt.

Ergebnisdaten für die KfW-Effizienzhaus-Formulare

Das beheizte Gebäudevolumen Ve nach der EnEV (Anlage 1 Nummer 1.3.2) beträgt: 871.7 m³ Die wärmeübertragende Umfassungsfläche A nach EnEV (Anlage 1 Nummer 1.3.1) beträgt: 600.7 m² Die Gebäudenutzfläche A_N nach der EnEV (Anlage 1 Nummer 1.3.3) beträgt: 279.0 m² Die in der Wärmeschutzberechnung berücksichtigte Fensterfläche beträgt: 54.6 m² Die (Außen-)Türfläche beträgt: 3.7 m² Gemäß EnEV Anlage 1 Tabelle 2 wurde folgender Gebäudetyp für das Wohngebäude angesetzt: freistehend Die Berechnung erfolgt nach EnEV Anlage 1 Nummer 2.1.2 DIN 4108-6/DIN 4701-10 Name und Version der verwendeten EnEV Software: EnEV-Wärme&Dampf V14.22 der ROWA-Soft GmbH Der Jahres-Primärenergiebedarf Qp für das Referenzgebäude (100 %-Wert) nach EnEV Anlage 1, Tabelle 1 beträgt: 77.4 kWh/(m²a) Der berechnete Jahres-Primärenergiebedarf Qp

nach EnEV für den Neubau beträgt: 42.4 kWh/(m²a) (45.20% besser als das Ref-Gebäude)

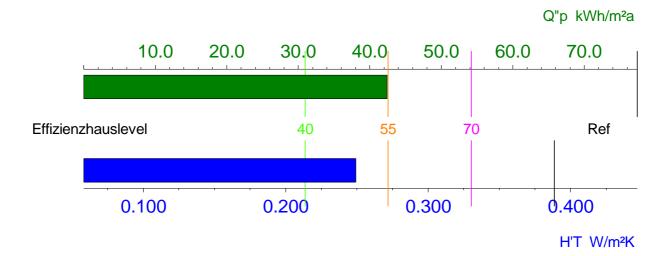
Der errechnete Höchstwert des auf die wärmeübertragende Umfassungsfläche des Gebäudes bezogenen spezifischen

Transmissionswärmeverlustes H'T mit den Anforderungen für das Referenzgebäude (100%-Wert) nach EnEV Anlage 1 Tabelle 1 beträgt: 0.388 W/(m2K)

Der berechnete auf die wärmeübertragende Umfassungsfläche des Gebäudes bezogene spezifische

Transmissionswärmeverlust H'T nach EnEV für den Neubau beträgt: 0.249 W/(m²K) (35.87% besser als das Ref-Gebäude)

Gleichzeitig wird der in der Tabelle 2 der Anlage 1 der EnEV2009 angegebene Höchstwert


des Transmissionswärmeverlustes HT' von: 0.400 W/(m²K)

nicht überschritten.

Der Wärmebrückenaufschlag in diesem Projekt beträgt: 0.025 W/(m2K)

Der Deckungsanteil der solarthermischer Trinkwasserbereitung beträgt: 58.8 % Art der Kollektoren: Flachkollektor Größe der Kollektoren: $8.1 \, \text{m}^2$

KfW Effizienzhauslevel

Randbedingungen

Sommerlicher Wärmeschutz:

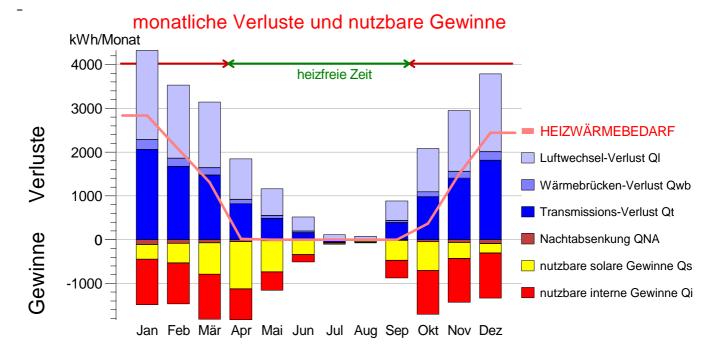
Bei dem Gebäude handelt es sich um ein Ein- oder Zweifamilienhaus, dessen Fenster in Ost-, Süd-, und Westrichtung mit außenliegenden Sonnenschutzvorrichtungen mit einem Abminderungsfaktor Fc<=0,3 ausgestattet werden/sind (Rolläden, Fensterläden, außenliegende Jalousien mit Lamellen oder Stoffe mit geringer Transparenz). Nach DIN 4108-2 2003-07 Absatz 8.3 kann in diesem Fall auf einen detaillierten Nachweis verzichtet werden.

Anforderungen an die Dichtheit:

Außen liegende Fenster, Fenstertüren und Dachflächenfenster müssen den Klassen nach EnEV Anlage 4 Tabelle 1 entsprechen. Für dies Gebäude ist die Klasse 2 der Fugendurchlässigkeit nach DIN EN 12207-1:2000-06 einzuhalten.

Die Luftdichtheit der Wände, des Daches, des unteren Gebäudeabschlusses, der Anschlüsse und Fugen muss nach den anerkannten Regeln der Technik gewährleistet werden (§6 der Energieeinsparverordnung).

Luftdichtheitsprüfung nach Fertigstellung:


Die Überprüfung der Dichtheit erfolgt nach §6 Abs. 1 der EnEV nach Fertigstellung des Gebäudes. Es darf der nach DIN EN 13829:20001-2 gemessene Volumenstrom, bei einer Druckdifferenz von 50 Pa, den Wert 1.5 1/h nicht überschreiten. Der Luftdichtheitsnachweis (Messprotokoll) wird diesem Dokument später beigefügt!

Gewinne und Verluste im einzelnen

kWh/Monat	Jan	Feb	März	April	Mai	Juni	Juli	Aug	Sep	Okt	Nov	Dez	gesamt
Ausnutzgrad η	1.000	1.000	0.999	0.699	0.410	0.169	0.012	0.017	0.404	0.970	1.000	1.000	
Q verlust	4212	3439	3066	1798	1134	501	38	42	861	2038	2882	3692	23703
Q Gewinn	1375	1381	1755	2553	2767	2961	3111	2542	2131	1719	1371	1250	24918
η * Q Gewinn	1375	1381	1753	1785	1134	501	38	42	861	1668	1371	1250	13158
Q_{h_2M}	2837	2058	1313	0	0	0	0	0	0	371	1511	2443	10532
Verluste im einzelnen aufgeschlüsselt													
Q_{T}	2034	1665	1493	921	611	320	100	70	446	992	1386	1773	11810
Q _S opak	-24	-7	17	106	130	161	169	103	61	12	-18	-35	675
Q _{NA Nachtabs.}	114	89	74	44	29	15	5	3	21	47	68	93	605
$Q_{T}\text{-}Q_{NA}\text{-}Q_{Sopak}$	1944	1582	1401	771	452	144	-73	-36	364	932	1336	1715	10531
Q_{WB}	227	186	166	103	68	36	11	8	50	111	155	198	1317
$Q_{\rm L}$	2041	1671	1498	924	613	321	101	70	448	995	1392	1780	11855
Gewinne im einzelnen	aufgeschli	isselt											
Q_{S}	337	444	717	1549	1729	1957	2074	1504	1127	682	367	212	12700
$Q_{\rm I}$	1038	937	1038	1004	1038	1004	1038	1038	1004	1038	1004	1038	12218
Die äquivalente Heizg	radtagezah	l ermittelt	aus dem e	nergetisch	nen Nivea	u des Geb	iudes						
Heiz-Gt	629	515	462	0	0	0	0	0	0	307	429	549	2891

Volumen und Flächen

Fensterflächenanteil f : 12.8 % (nach EnEV 2002-2007 Anhang 1 Absatz 2.8)

allgemeine Projektdaten

 $Temperatur \ Warmseite \ \vartheta_i \\ \hspace{2cm} : 19^{\circ}C \ (normale \ Innenraum temperatur >= 19 \ ^{\circ}C \ nach \ Anhang \ 1 \ der \ EnEV)$

Gebäudeart : Wohngebäude
Warmwasseraufbereitung : zentral
Bauart : ein Massivbau
das Gebäude ist : ein Neubau

das Gebäude ist um : 0.0° aus der Nord-Süd-Richtung gedreht.

Luftvolumenberechnung

Gebäudeart : es handelt sich um ein Gebäude mit bis zu drei Vollgeschossen und nicht

mehr als zwei Wohnungen oder um ein Ein- oder Zweifamilienhaus bis zu

 $2\ Vollgeschossen\ und\ nicht\ mehr\ als\ 3\ Wohneinheiten$

Gebäudevolumen V_e : 871.7 m^3

Luftvolumen : 662.5 m³ 0,76 * Gebäudevolumen

Nutzflächenberechnung

Gebäudehöhe : 8.50 mGeschoßanzahl : 2Gebäudegrundfläche : 145.7 m^2 Grundflächenumfang : 52.9 m

Gebäudenutzfläche : 279.0 m² 0.32 * Gebäudevolumen

interne Wärmegewinne pauschaler Ansatz

in Wohngebäuden 24h/Tag 5W/m² 120 Wh/m² pro Tag bei einer Nutzfläche von 279 m² ==> 33 kWh/Tag

 $Q_i = 12218 \text{ kWh/a}$ [1004 kWh/Monat]

davon nutzbare Wärmegewinne Qi= 7792 kWh/a

Wärmebrücken detailliert

Die Wärmebrücken wurden separat nachgewiesen. Der Wärmebrückenaufschlag beträgt 15.017 W/K (0.0250 W/m²K)

Gesamt-Wärmebrückenverlust pro Jahr Qwb =1317 kWh/a

Luftwechsel

Lüftungsverluste Q_v 1855 kWh/a

 $\begin{array}{lll} \text{Luftvolumen:} & 662.5 \text{ m}^3 \\ \text{Luftwechselrate:} & 0.60 \text{ h}^{-1} \end{array}$

Art der Lüftung: maschinelle Lüftung mit Wärmetauscher

 $\begin{array}{ll} \text{Nutzungsfaktor des Abluft-Zuluft-W\"{a}rmetauschersystems } \eta_v: & 0 \% \\ \text{Anlagenluftwechsel } n_{\text{Anl}}: & 0.40 \text{ h}^{-1} \\ \text{Luftwechsel infolge Undichtheiten inkl. Fenster\"{o}ffnungen } n_x: & 0.20 \text{ h}^{-1} \\ \end{array}$

Die genaue Berechnung der Lüftungsanlage erfolgt über die DIN 4701-10 Anlagenverordnung, dort werden auch mögliche Wärmerückgewinne berücksichtigt.

Die Luftwechselverluste des Gebäudes sind weiterhin über die DIN 4108-06 zu berücksichtigen.

Luftwechselverluste in kWh

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
2041	1671	1498	924	613	321	101	70	448	995	1392	1780

Klimaort

Es wurden Solar- und Klimadaten vom "mittleren Standort Deutschland " verwendet.

Solar-Referenzort: mittlerer Standort Deutschland Temperatur-Referenzort: mittlerer Standort Deutschland

monatliches Temperaturmittel

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
-1.3	0.6	4.1	9.5	12.9	15.7	18.0	18.3	14.4	9.1	4.7	1.3

monatliche Strahlungsintensität

	Strahlungsintensitäten die für die Berechnung benötigten Richtungen und Neigungen in W/m²												
Richtung	Neig.	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Süd-Ost	90°	44	52	70	140	132	146	153	120	109	69	44	26
West	30°	33	51	78	181	199	238	240	170	129	72	38	21
West	90°	25	37	53	125	131	150	156	115	90	51	28	15
Nord-Ost	30°	22	39	63	151	180	222	221	150	105	57	28	16
Nord-Ost	90°	14	25	38	89	105	124	128	90	62	35	18	10
Nord	90°	14	23	34	64	81	99	100	70	48	33	18	10

Ausnutzungsgrad der Gewinne

Für die Berechnung des Ausnutzungsgrades η solarer und interner Wärmegewinne wurde der vereinfachte Ansatz verwendet.

die Bauart ist:ein MassibauSpeicherfähigkeit:50.00Wh/m³KVolumen:872m³ C_{wirk} :43587Wh/Kspezifischer Wärmeverlust H:285W/K

monatliche Ausnutzungsgrade

_	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
	1.000	1.000	0.999	0.699	0.410	0.169	0.012	0.017	0.404	0.970	1.000	1.000

Warmwasser

Warmwasser pauschal (12,5KWh/m²a)

Energiebedarf für die Warmwasseraufbereitung $Q_{\rm w}~3487~{\rm kWh/a}$

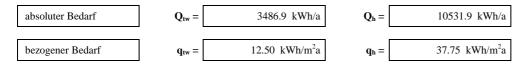
Begrenzung der Leitungsverluste

Die Wärmeabgabe der Wärme- und Warmwasserverteilungsleitungen ist gem. § 14 Abs.5 i.V.m.Anhang 5 EnEV wie folgt zu begrenzen:

Die warmeab	gabe der Warme- und Warmwasserverteilungsleitungen ist gem. § 14 Abs.5 i.V.m.Anhang 5 Er	iE v wie folgt zu begrenzen:
		Mindestdicke der Dämm-
		schicht, bezogen auf eine
	Art der	Wärmeleitfähigkeit von
Zeile	der Leitungen/Armaturen	0,035
		$W/(m^2.K)$
1	Innendurchmesser bis 22 mm	20 mm
2	Innendurchmesser über 22 mm bis 35 mm	30 mm
3	Innendurchmesser über 34 mm bis 100 mm	gleich Innendurchmesser
4	Innendurchmesser über 100 mm	100 mm
	Leitungen und Armaturen nach den Zeilen 1 bis 4 in	
	Wand- und Deckendurchbrüchen, im	
5	Kreuzungsbereich von Leitungen, an	1/2 der Anforderungen
	Leitungsverbindungsstellen, bei zentralen	der Zeilen 1 bis 4
	Leitungsnetzverteilern	
	Leitungen von Zentralheizungen nach den Zeilen 1	
6	bis 4, die nach dem 31.Januar 2002 in	1/2 der Anforderungen
	Bauteilen zwischen beheizten Räumen	der Zeilen 1 bis 4
	verschiedener Nutzer verlegt werden.	
7	Leitungen nach Zeile 6 im Fußbodenaufbau	6 mm
	Kälteverteilungs- und Kaltwasserleitungen	
8	sowie Armaturen von Raumlufttechnik- und	6 mm
	Klimakältesystemen	

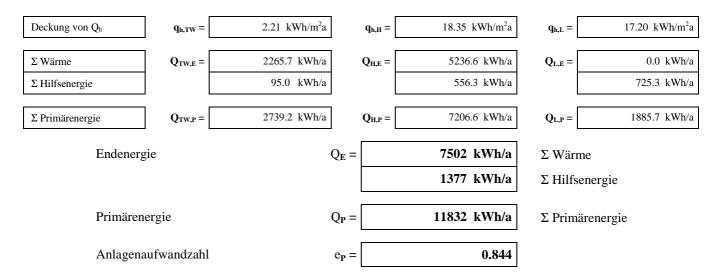
Anlagenbewertung nach DIN 4701 Teil 10

für ein Gebäude mit normalen Innentemperaturen


Bezeichnung des Gebäudes: EFH Eilers / Wingbermühle
Ort: 26127 Oldenburg
Straße/Nr.:Le-Corbusier-Str. 34
Gemarkung: Eversten, Flur 18
Flurstücknummer: 149/25

I.Eingaben

Trinkwasser- Heizung Lüftung


Erwärmung

II.Systembeschreibung

Details siehe Trinkwasser- Heizungs- und Lüftungsbeschreibung

III.Ergebnisse

Bereich 1:		Anteil 100.0 %		Nutzfläche 279.0 m ²		
		Wärmeverlust		Hilfsenergie		Heizwärmegutschriften
Verlust aus EnEV:	$q_{tw} =$	12.50 kWh/m ² a				
Übergabe:	$q_{\rm TW,ce} =$	$0.00 \text{ kWh/m}^2 \text{a}$	$q_{\text{TW,ce,HE}} =$	0.00 kWh/r	$q_{h,TW,ce} =$	0.00 kWh/m²a
Verteilung:	$q_{TW,d} =$	$3.41 \text{ kWh/m}^2\text{a}$	$q_{\rm TW,d,HE} =$	0.00 kWh/r	$q_{h,TW,d} =$	1.54 kWh/m ² a
Verteilungsart: Verteilung des Trinkwasse	rs innerhalb the	gebäudezentrale Trinkwass ermischer Hülle gemeinsamen Installationsv			00 m² Nutzfläche)	
Speicherung:		1.53 kWh/m ² a		0.00 kWh/r	n^2	0.66 kWh/m²a
Speicherart:	$q_{TW,s} =$	bivalenter Solarspeicher	$q_{TW,s,HE} =$	0.00 KWI/I	$q_{h,TW,s} =$	0.00 KWII/III a
der Speicher steht innerhal	b der thermisch					
Wärmeerzeuger:	$\Sigma =$	10.26 kWh/m ² a	$q_{\mathrm{TW,g,HE}} =$	0.45 kWh/m ² a		
Wärmeerzeugerart: Energieträgerart:		solare Trinkwasser-Erwärn Solarenergie	nung			
Deckungsanteil		$\alpha_{\text{TW,g}}$:		58.8	%	
Aufwandzahl Erzeuger Endenergie Erzeuger		$\mathbf{e}_{\mathrm{TW,g}}$: $\mathbf{q}_{\mathrm{TW,E}}$:		0.000 0.00	kWh/m²a	
Primärenergiefaktor Erzeu	ger	Чтw,E · f _{p,i} :		0.00	K VV II/III a	
Primärenergie Erzeuger	C	$q_{TW,P}$:		0.00	kWh/m²a	
solare Trinkwassererwärm	ung über :			Flachkollektor		
alpha1		$\alpha 1$:		0.588		
alpha2 Aufstellung innerhalb der i	hermischen Hi	α2 : ille (Speicher und Verteilun	gen ohne Zirkulati	1.000		
Wärmeerzeuger:	$\Sigma =$	7.17 kWh/m ² a	$q_{\text{TW,g,HE}} =$	0.18 kWh/m ² a		
Wärmeerzeugerart: Energieträgerart:		Brennwertkessel Erdgas H	11,8,,			
Deckungsanteil		$\alpha_{\rm TW,g}$:		41.2	%	
Aufwandzahl Erzeuger		$e_{TW,g}$:		1.132		
Endenergie Erzeuger		$q_{\mathrm{TW,E}}$:		8.12	kWh/m²a	
Primärenergiefaktor Erzeu	ger	$f_{p,i}$:		1.10	1 3371 / 2	
Primärenergie Erzeuger		$q_{\mathrm{TW,P}}$:		8.93	kWh/m²a	
Hilfsenergie:		£ .	$\Sigma \; q_{TW,HE,E} =$	0.34 kWh/r 2.60	па	
Primärenergiefaktor Hilfse Primärenergie Hilfsenergie		$f_{p,H}$: $q_{TW,HE,P}$:		0.88	kWh/m²a	
Endergebnis Heizw	värmegutschrift	pro m ² :		$q_{h,T}$	w =	2.21 kWh/m²a
Wärmeendenergie pro m ²		$^{ m q}_{ m TW,E}$:		8.12 kWh/r	n ² a	
Hilfsendenergie pro m ²		$^{\mathrm{q}}_{\mathrm{TW},\mathrm{HE,E}}$:		0.34 kWh/r	n ² a	
Primärenergie pro m ²		$^{q}_{\mathrm{TW,P}}$:		9.82 kWh/r	n ² a	
Wärmeendenergie		$Q_{\mathrm{TW,E}}$:		2265.7 kW	h/a	
Hilfsendenergie		$Q_{TW,E}$:		95.0 kW	h/a	
·		•	<u> </u>			

Wärmeendenergie

Hilfsendenergie

Primärenergie

			DIN 470	4 TEU 40				
Bereich 1:		HEIZUNG nach Anteil 100.0 %		1 I EIL 10 Nutzfläche 279.0 m ²				
		Wärmeverlust		Hilfsenergie				
Heizwärmebedarf	q _h =	37.75 kWh/m²a						
Heizwärmegutschriften	q _{h,TW} =	2.21 kWh/m ² a	vom Trink	wasser				
Heizwärmegutschriften	q _{h,L} =	17.20 kWh/m ² a	durch die l	Lüftungsanlage				
Übergabe:	$q_{\mathrm{c,e}} =$	1.10 kWh/m²a	$q_{\text{ce},\text{HE}} =$	0.00 kWh/n	n ² a			
Übergabeart: Wass Übergabe erfolgt ohne zusä	erheizung: integrierte itzliche Luftumwälzu	e Heizflächen, Einzelraumreng z.B. durch einen Ventila	egelung mit Zw tor	eipunktregler Schaltdiff.	. 1°K			
Verteilung:	$q_d =$	$0.52 \text{ kWh/m}^2\text{a}$	$q_{d,HE} = \\$	1.49 kWh/n	n ² a			
Verteilungsstränge (vertika	der Wärme erfolgt im l) befinden sich inner	sizkreistemperatur 35/28°C nerhalb der thermischen Hü halb der thermischen Hülle geregelte Pumpe eingesetz						
Speicherung:	$q_s =$	$0.00 \text{ kWh/m}^2\text{a}$	$q_{s,\text{HE}} =$	0.00 kWh/n	n ² a			
Speicherart:		ine Speicherung	ſ					
Wärmeerzeuger:	$\Sigma =$	19.97 kWh/m ² a	$q_{g,HE} =$	0.50 kWh/m ² a				
Wärmeerzeugerart: Energieträgerart:		ennwertkessel"verbessert" (dgas H	(BDH-Produktl	kennwerte)				
Deckungsanteil	DI.	$lpha_{H,g}$:		100.0 %				
Aufwandzahl Erzeuger		e _g :		0.940				
Endenergie Erzeuger		q_E :		18.77	kWh/ı			
Primärenergiefaktor Erzeug	ger	f_p :		1.10				
Primärenergie Erzeuger		q _P :	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20.65	kWh/ı			
<u> </u>	intunaonangig betriet	en werden kann, befindet s	Ī		2			
Hilfsenergie:			$\Sigma q_{HE,E} =$	1.99 kWh/n	n-a			
Primärenergiefaktor Hilfsei		$f_{p,H}$:		2.60				
Primärenergie Hilfsenergie		$q_{\mathrm{HE,P}}$:		5.18	kWh/ı			
Endergebnis								
Wärmeendenergie pro m ²		$^{ m q}_{ m H,E}$:		18.77 kWh/n	n ² a			
Hilfsendenergie pro m ²		q _{H,HE,E} :		1.99 kWh/n	n ² a			
Primärenergie pro m ²		$^{\mathrm{q}}_{\mathrm{H,HE,P}}$:		25.83 kWh/n	n ² a			

 $Q_{\text{H,E}}$:

 $Q_{H,E}$:

 $Q_{H,P}$:

5236.6 kWh/a

556.3 kWh/a

 $7206.6\ kWh/a$

		LÜ	FTUNG			
Bereich 1:		Anteil 100.0 %	Nutzfläcl	ne 279.0 m ²		
		Wärmegewinn	v	Värmeverlust		Hilfsenergie
			1			
Übergabe:	$q_{L,ce} =$	-0.00 kWh/m ² a			$q_{L,\text{ce},\text{HE}} =$	$0.00 \text{ kWh/m}^2\text{a}$
Übergabeart: z.B.Lüftungsanlagen mit Wärm Anordnung der Luftauslässe üb	erückgewinnung					
Verteilung:	$q_{L,d} =$	$-0.00 \text{ kWh/m}^2\text{a}$			$q_{L,d,\text{HE}} =$	$0.00 \text{ kWh/m}^2\text{a}$
Verteilungsart:	Verlegun	g der Verteilleitungen im	nerhalb der thermischer	n Hülle		
Luftwechselkorrektur:	$q_{h,n} =$	-0.00 kWh/m ² a				
Anlagenluftwechsel: anrechenbare Heizarbeit: (qh-q _I	$_{\rm L,g,WEWRG}$ + $q_{ m h,n})$			40 1/h (nA, _{norm} =0,4 0.6 kWh/m ² a	1/h)	
Ez WRG mit WÜT :	$q_{L,g,WRG} \\$	17.20 kWh/m ² a			$q_{L,g,HE,WRG} \\$	2.60 kWh/m ² a
Erzeugerart:	Abluft/Zuluft V	Värmeübertrager zentral,\	Wirkungsgrad >=80% ι	and DC-Ventilatoren		
Erzeuger L/L-WP:	$q_{L,g,WP} \\$	$0.00 \text{ kWh/m}^2\text{a}$	$q_{L,g,WP0}.00 \text{ kWh/m}^2 \text{a}$	$q_{L,g,\text{HE},\text{WP}}$		$0.00 \text{ kWh/m}^2\text{a}$
Erzeugerart:	keine Wärmepu		1			
Erzeuger Heizregister:	$q_{L,g,HR} \\$	$0.00 \text{ kWh/m}^2\text{a}$	$q_{L,g,HR0}.00 \text{ kWh/m}^2 a$	$q_{L,\mathrm{g},\mathrm{HE},\mathrm{HR}}$		$0.00 \text{ kWh/m}^2\text{a}$
Erzeugerart:	kein Heiz	zregister				
Hilfsenergie:					$\Sigma \; q_{\text{L,HE,E}} =$	2.60 kWh/m ² a
Primärenergiefaktor Hilfsenergie Primärenergie Hilfsenergie	ie	$f_{ extsf{p,H}}$: $q_{ extsf{A,HE,P}}$:		2.60 6.76 kWh/m²a		
Endergebnis						
Lüftungsbeitrag am Q _h :	$q_{h,L} =$	17.20 kWh/m²a				
Wärmeendenergie pro m²		$^{q}_{L,E}$:		0.00 kWh/m ² a		
Hilfsendenergie pro m ²		$^{\mathrm{q}}_{\mathrm{L},\mathrm{HE,E}}$:		2.60 kWh/m ² a		
Primärenergie pro m ²		$^{q}_{L,HE,P}$:		6.76 kWh/m ² a		
Wärmeendenergie		$Q_{L,E}$:		0.0 kWh/a		
Hilfsendenergie		$Q_{L,E}$:		725.3 kWh/a		
Primärenergie		$Q_{L,P}$:		1885.7 kWh/a		

Überprüfung des Mindestwärmeschutz aller Bauteile nach DIN 4108-2 2003-07

Bauteil	Flächen-	Innen-	R	Grenz-	Art	Ergebnis
	gewicht	raum-		wert		
	kg/m²	temp	m²K/W	m²K/W		
Außenwand	356.6	normal	6.07	1.20	*1	OK
Außenwand First	100.4	normal	2.17	1.20	*1	OK
Dach	86.6	normal	6.95	1.75	*8	OK
Boden auf Erdreich	572.3	normal	6.59	0.90	*1	OK

Art der Berechnung: nach DIN 4108-2:2003-07:

Sommerlicher Wärmeschutz nach DIN 4108-2 2003-07

Bei dem Gebäude handelt es sich um ein Ein- oder Zweifamilienhaus, dessen Fenster in Ost-, Süd-, und Westrichtung mit außenliegenden Sonnenschutzvorrichtungen mit einem Abminderungsfaktor Fc<=0,3 ausgestattet werden/sind (Rolläden, Fensterläden, außenliegende Jalousien mit Lamellen oder Stoffe mit geringer Transparent) .Nach DIN 4108-2 2003-07 Absatz 8.3 kann in diesem Fall auf ein detaillierten Nachweis verzichtet werden.

Dampfdiffusionsnachweis

Bauteil Außenwand Außenwand First Balkenbereich Dach Balkenbereich	Fall R-Type D 1 D 1 D 1 B 3 B 3	Tauw. kg/m² 0.666 1.016 0.079 0.006 0.005	Verd. kg/m² 0.534 0.489 0.058 0.006	Rest kg/m² 0.132 0.527 0.022	Schicht 3-4 2-3 2-3 3/4 3/4	OK nicht OK nicht OK nicht OK OK OK
Randbedingungen der Dampfdiffusionsb	erechnung					
R-Type Type 1 normale Außenwand	°C warm	°C kalt	% warm	% kalt	Stunden	°C Dach
Tauperiode	20	-10	50	80	1440	
Verdunstungsperiode	12	12	70	70	2160	
Type 3 Dach/Decke gegen Außenluft						
Tauperiode	20	-10	50	80	1440	
Verdunstungsperiode	12	12	70	70	2160	20

^{*1} Tabelle 3, normale Bauteile >=100kg/m²

^{*8} Gefachbauteil mit weniger als 100 kg Flächengewicht

Bauteilverwendung und Flächenberechnung

Bauteile der Bauteilart: Wand

Bauteil/Einsatzart	U-Wert	Fläche
normale Außenwand beheizter Räume Faktor = $1.00~R_{Si} = 0.13~R_{Se} = 0.04~R = 6.07$ Strahlungsabsorbtionsgrad α = $0.50~K$ linkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = $0.80~K$ licht. = $158^{\circ}~SSO~N$ eig = $90^{\circ}~s$ enkrecht Außenwand Bez.: AwSüdost 78,39	0.16 W/m²K	78.39 m²
"Eigene Fenster" Haustür B x H : 1.64 m x 2.26 m 1 Stück 3.71 m ² Glas+Ra. : U-Wert = 1.70 W/m ² K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S = 0.900 F_F = 0.700 F_C = 1.000	1.70 W/m²K	-3.71 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,51*1,01} \\ \text{B x H}: 1.01 \text{ m x 1.51 m} 1 \text{ Stück} \\ \text{Glas+Ra.} : \text{U-Wert} = 0.88 \text{ W/m}^2\text{K (Herstellerangabe)} \text{ g-Wert} = 50 \% \\ \text{Verschattung: } F_\text{S}{=}0.900 F_\text{F}{=}0.700 F_\text{C}{=}1.000 \text{ sommerlicher Sonnenschutz} R_\text{e}{=}0.60 T_\text{e}{=}0.25 \\ \end{array} $	0.88 W/m²K	-1.53 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 2,26*1,01} \\ \text{B x H}: \ 1.01 \text{ m x 2.26 m} \ 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.87 \text{ W/m}^2\text{K (Herstellerangabe)} \ \text{g-Wert} = 50 \text{ \%} \\ \text{Verschattung: } F_\text{S}{=}0.900 \ F_\text{F}{=}0.700 \ F_\text{C}{=}1.000 \ \text{sommerlicher Sonnenschutz} \ R_\text{e}{=}0.60 \ T_\text{e}{=}0.25 \\ \end{array} $	0.87 W/m ² K	-2.28 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,32*1,64} \\ \text{B x H}: \ 1.64 \text{ m x 1.32 m} \ 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.85 \text{ W/m}^2 \text{K (Herstellerangabe)} \ \text{g-Wert} = 50 \% \\ \text{Verschattung:} \ F_\text{S}{=}0.900 \ F_\text{F}{=}0.700 \ F_\text{C}{=}1.000 \ \text{sommerlicher Sonnenschutz} \ R_\text{e}{=}0.60 \ T_\text{e}{=}0.25 \\ \end{array} $	0.85 W/m²K	-2.16 m ²
		68.71 m²
normale Außenwand beheizter Räume Faktor = 1.00 R $_{Si} = 0.13$ R $_{Se} = 0.04$ R = 6.07 Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = -113° WSW Neig = 90° senkrecht		
Außenwand Bez.: AwSüdWest 49,05	$0.16~\mathrm{W/m^2K}$	49.05 m ²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 2,26*2,01} \\ \text{B x H}: \ 2.01 \text{ m x } 2.26 \text{ m} 2 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.81 \text{ W/m}^2\text{K (Herstellerangabe)} \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_\text{S}{=}0.900 F_\text{F}{=}0.700 F_\text{C}{=}1.000 \text{sommerlicher Sonnenschutz} R_\text{e}{=}0.60 T_\text{e}{=}0.25 \\ \end{array} $	0.81 W/m ² K	-9.09 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 2,26*3,01} \\ \text{B x H}: \ 3.01 \ \text{m} \times 2.26 \ \text{m} \ \ 1 \ \text{Stück} \\ \text{Glas+Ra.} \qquad : \ \text{U-Wert} = 0.79 \ \text{W/m}^2 \text{K} \ (\text{Herstellerangabe}) \ \ \text{g-Wert} = 50 \ \% \\ \text{Verschattung:} \ \ F_s = 0.900 \ \ F_F = 0.700 \ \ \text{F}_C = 1.000 \ \ \text{sommerlicher Sonnenschutz} \ \ R_e = 0.60 \ \ T_e = 0.25 \\ \end{array} $	0.79 W/m²K	-6.80 m²
. Clockwide, 15-0.700 1F-0.700 1C-1.000 Sommemone Domenschutz Re-0.00 1e-0.25		33.16 m²

normale Außenwand beheizter Räume

2.1	1	201/
ZI.	Januar	2014

BV Einfamilienhaus - Le-Corbusier-Str. 34 - 26127 Oldenburg	21. Januar 2014	
Faktor = 1.00 R_{Si} = 0.13 R_{Se} = 0.04 R = 5.80 Strahlungsabsorbtionsgrad α = 0.50 heller Anstrich (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = -113° WSW Neig = 90° senkrecht Außenwand First Bez.: AwSüdWest2 22,22 Flächenanteil des Feldbereiches 90.00 %	0.17 W/m²K	22.22 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 0,69*1,01} \\ \text{B x H}: 1.01 \text{ m x 0.69 m} 3 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.96 \text{ W/m}^2\text{K (Herstellerangabe)} \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung:} F_S = 0.900 F_F = 0.700 F_C = 1.000 \text{sommerlicher Sonnenschutz} R_e = 0.60 T_e = 0.25 \\ \end{array} $	0.96 W/m²K	-2.09 m²
		20.13 III
normale Außenwand beheizter Räume $Faktor = 1.00 R_{Si} = 0.13 R_{Se} = 0.04 R = 6.07$ Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = -23° NNW Neig = 90° senkrecht		
Außenwand Bez.: AwNordwest	$0.16~\mathrm{W/m^2K}$	78.39 m ²
78,39 "Eigene Fenster" $Ug=0,7 \ / \ Uf=1,0 \ \ 1,32*1,01$ B x H: 1.01 m x 1.32 m 2 Stück	0.89 W/m²K	-2.67 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,32*1,64} \\ \text{B x H}: \ \ 1.64 \text{ m x 1.32 m} \ \ 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert=0.85 W/m²K (Herstellerangabe)} \ \ \text{g-Wert=50 \%} \\ \text{Verschattung: } \ F_{\text{S}}\text{=0.900} \ \ F_{\text{F}}\text{=0.700} \ \ F_{\text{C}}\text{=1.000} \ \ \text{sommerlicher Sonnenschutz} \ \ R_{\text{e}}\text{=0.60} \ \ T_{\text{e}}\text{=0.25} \\ \end{array} $	0.85 W/m²K	-2.16 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 2,26*1,64} \\ \text{B x H}: & 1.64 \text{ m x 2.26 m} & 1 \text{ Stück} \\ \text{Glas+Ra.} & : \text{U-Wert} = 0.82 \text{ W/m}^2\text{K (Herstellerangabe)} & \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_S = 0.900 F_F = 0.700 F_C = 1.000 \text{ sommerlicher Sonnenschutz } R_e = 0.60 T_e = 0.25 \\ \end{array} $	0.82 W/m²K	-3.71 m ²
		07.83 III
normale Außenwand beheizter Räume $Faktor = 1.00 R_{Si} = 0.13 R_{Se} = 0.04 R = 6.07$ Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = 68° ONO Neig = 90° senkrecht Außenwand Bez.: AwNordOst 59,23	0.16 W/m²K	59.23 m²
"Eigene Fenster" Nebentür B x H : 1.01 m x 2.26 m 1 Stück 2.28 m² Glas+Ra. : U-Wert = 1.70 W/m²K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 sommerlicher Sonnenschutz F_C =0.60 F_C =0.50	1.70 W/m²K	-2.28 m²
"Eigene Fenster" $ Ug=0,7 \ / \ Uf=1,01,32*0,89 \\ B \ x \ H: 0.89 \ m \ x \ 1.32 \ m 5 \ Stück \\ Glas+Ra. : U-Wert = 0.91 \ W/m^2K \ (Herstellerangabe) \ g-Wert = 50 \ \% \\ Verschattung: \ F_s=0.900 \ F_r=0.700 \ F_c=1.000 \ sommerlicher Sonnenschutz \ R_r=0.60 \ T_r=0.25 $	0.91 W/m²K	-5.87 m²
		51.07 m ²

Bauteile der Bauteilart: Decke zum Dachge., Dach

Bauteil/Einsatzart U-Wert Fläche

Dach/Decke gegen Außenluft

21. Januar 2014

Faktor = $1.00 R_{Si} = 0.10 R_{Se} = 0.04 R = 5.54$ Strahlungsabsorbtionsgrad α = 0.80 dunkle Oberfläche (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = -113° WSW Neig = 32° Bez.: DaSüdWest 0.18 W/m²K 66.76 m² 66,76 Flächenanteil des Feldbereiches 90.00 % "Eigene Fenster" Ug=0,6 Uf=1,7 ... Dachverglasung 0.96 W/m2K -9.16 m² B x H: 0.83 m x 3.68 m 3 Stück : U-Wert = 0.96 W/m²K (Herstellerangabe) g-Wert = 49 % Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 sommerlicher Sonnenschutz R_e =0.30 T_e =0.25 "Dachfenster" zertifiziertes Dachfenster 1,3 1.30 W/m²K -2.10 m² B~x~H:~0.75~m~x~1.40~m~~2~Stück2.10 m² : U-Wert = 1.30 W/m²K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 55.50 m² Dach/Decke gegen Außenluft $Faktor = 1.00 \quad R_{Si} = 0.10 \quad R_{Se} = 0.04 \quad R = 5.54$ Strahlungsabsorbtionsgrad α = 0.80 dunkle Oberfläche (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = 68° ONO Neig = 28° Bez.: DaNordOst $0.18~W/m^2K$ 100.91 m² Flächenanteil des Feldbereiches 90.00 % 90 "Dachfenster" zertifiziertes Dachfenster 1,3 1.30 W/m²K -2.70 m² B x H: 0.75 m x 1.20 m 3 Stück 2.70 m² : U-Wert = 1.30 W/m²K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 98.21 m²

Bauteile der Bauteilart: Grundfläche, Kellerdecke

Bauteil/Einsatzart		U-Wert	Fläche
gedämmte Fußböden beheizter Aufenthaltsr. auf dem Erdreich Faktor = 0.50 keine Randdämmung B'=5.5 m $R_{Si} = 0.17$ $R_{Se} = 0.00$ Richt. = 0° Neig = 0° waagerecht	R = 6.59		
Boden auf Erdreich 145,72	Bez.: Grundfläche	$0.15~\mathrm{W/m^2K}$	145.72 m²
			145.72 m²

Volumenberechnung des Gebäudes

 $= 871.7 \text{ m}^3$ $= 871.7 \text{ m}^3$ $= 871.7 \text{ m}^3$

Schichtaufbau und U-Werte der verwendeten Bauteile

				2	22.80 m²	U-Wert =	0.160 W/m²K
Außenwand							
Material		Dichte [kg/m³]	Dicke s [mm]	λ [W/mK]	R [m²K/W]	Diff Wid.	
Luftübergang Warmseite R _{Si} 0.13		1800.0	15.00	0.870	0.017	15 / 35	
1 Kalkzementputz 2 Ytong-Planblock PPW2-0,40		500.0	175.00	0.870	1.750	13 / 33	Marmseite Marmse
3 Glaswolle 035	D	250.0	140.00	0.035	4.000	1	
4 Luft ruhend horizontal	Ъ	1.3	40.00	0.222	0.180	1	
5 Vollklinker		1800.0	115.00	0.910	0.126	50 / 100	
Luftübergang Kaltseite R _{Se} 0.04				****	0.1-20		
Bauteildicke = 485.00 mm	Flächengew	icht = 356.6 k	g/m²	R =	= 6.07 m ² K/W		
Überprüfung des Mindestwärmeschut	zes nach DIN 410)8-2:2003-7 T	Tabelle 3. norm	ale Bauteile (>	=100kg/m ²):		
1 2	de Außenwand be				, y).		
zur Berechnung herangezogenes Fläch	hengewicht		: 35	6.6 kg/	/m²		
R an der ungünstigsten Stelle	-		: 6.0	074 m²	K/W		
Grenzwert (Mindestwert) für R			: 1.3	200 m ²	K/W		

	20.13 m²	$U\text{-Wert} = 0.168 \text{ W/m}^2\text{K}$
Außenwand First		

	Dac Bar	utail basitzt 2 S	chichtharaicha				
	Das Bauteil besitzt 2 Schichtbereiche Dichte Dicke λ R Diff Wid.						
Material	[kg/m ³]	s [mm]	[W/mK]	[m ² K/W]	Dili Wiu		
Aufbau des Feldbereichs 90.0 9		S [IIIII]	[W/IIIK]	[III-K/ W]			
	O						
Luftübergang Warmseite R _{Si} 0.13 F1 OSB-Platten	650.0	20.00	0.130	0.154	30 / 50		
F2 Glaswolle 035	250.0	240.00	0.130	6.857	30 / 30		
		240.00	0.035	0.857	40		
F4 Abdichtung	1000.0	2.00	0.170	0.012	600000		
F5 Zink	7200.0	0.70	110.000	0.000	999999		
Luftübergang Kaltseite R _{Se} 0.04							
Aufbau des Balkenbereichs 10.0 9	6						
Luftübergang Warmseite R _{Si} 0.13							
B1 OSB-Platten	650.0	20.00	0.130	0.154	30 / 50		
B2 Fichte, Kiefer, Tanne	600.0	240.00	0.130	1.846	40		
B3 Fichte, Kiefer, Tanne	600.0	20.00	0.130	0.154	40		
B4 Abdichtung	1000.0	2.00	0.170	0.012	600000		
B5 Zink	7200.0	0.70	110.000	0.000	999999		
Luftübergang Kaltseite R _{Se} 0.04							

U-Wert-Berechnung inhomogener Bauteile nach DIN EN ISO 6946

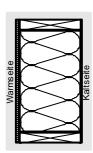
die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

Bauteildicke	Feldanteil	Flächengewicht	U-Wert	R_{T}	R_T '	R_T "
282.70 mm	90.0 %	100.4 kg/m^2	$0.168 \text{ W/m}^2\text{K}$	5.97 m ² K/W	$6.05 \text{ m}^2\text{K/W}$	$5.88 \text{ m}^2\text{K/W}$

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 Tabelle 3, normale Bauteile (>=100kg/m²):

Einsatzart: normale Außenwand beheizter Räume

: 100.4 zur Berechnung herangezogenes Flächengewicht


R an der ungünstigsten Stelle : 2.166 m²K/W (Balkenbereich) : 1.200 m²K/W

Grenzwert (Mindestwert) für R

die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

	153.71 m²	$U\text{-Wert} = 0.176 \text{ W/m}^2\text{K}$	
Dach			

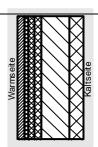
		Das Bau	iteil besitzt 2 S	chichtbereiche		
		Dichte	Dicke	λ	R	Diff Wid.
Material		$[kg/m^3]$	s [mm]	[W/mK]	$[m^2K/W]$	
Aufbau des Feldbereichs	90.0 %					
Luftübergang Warmseite R _{Si} 0.10						
F1 Gipskarton DIN 18180	D	900.0	12.50	0.210	0.060	8
F2 Dörken Delta Reflex Plus		1100.0	4.00	0.170	0.024	37500
F3 Glaswolle 035		250.0	240.00	0.035	6.857	1
F4 Dörken Delta Maxx		1000.0	2.50	0.170	0.015	600000
Luftübergang Kaltseite R _{Se} 0.04						
Aufbau des Balkenbereichs	10.0 %					
Luftübergang Warmseite R _{Si} 0.10						
B1 Gipskarton DIN 18180	D	900.0	12.50	0.210	0.060	8
B2 Dörken Delta Reflex Plus		1100.0	4.00	0.170	0.024	37500
B3 Fichte, Kiefer, Tanne		600.0	240.00	0.130	1.846	40
B4 Dörken Delta Maxx		1000.0	2.50	0.170	0.015	600000
Luftübergang Kaltseite R _{Se} 0.04						

U-Wert-Berechnung inhomogener Bauteile nach DIN EN ISO 6946

Bauteildicke	Feldanteil	Flächengewicht	U-Wert	R_{T}	R_T	R_T "
259.00 mm	90.0 %	86.6 kg/m^2	0.176 W/m ² K	$5.68 \text{ m}^2\text{K/W}$	5.72 m ² K/W	5.63 m ² K/W

145.72 m²

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 leichte Bauteile (<100kg/m²):


der Wärmedurchlasswiderstand des Feldbereichs und der mittlere Wärmeduchlasswiderstand wurden überprüft

zur Berechnung herangezogenes Flächengewicht : 86.6 kg/m^2 : 6.955 m²K/W (Feldbereich) R an der ungünstigsten Stelle Grenzwert (Mindestwert) für R : 1.750 m2K/W : 5.535 R gesamte Bauteil (Mittelwert) m²K/W Grenzwert (Mindestwert) für das Gesamtbauteil : 1.000 m²K/W

die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

Boden auf Erdreich

Material Luftübergang Warmseite R _{Si} 0.17		Dichte [kg/m³]	Dicke s [mm]	$\lambda \\ [W/mK]$	R [m²K/W]	Diff Wid.
1 Zementestrich	D	2000.0	50.00	1.400	0.036	15 / 35
2 EPS 035		20.0	30.00	0.035	0.857	41
3 PUR 024 - beidseitig Alu -		125.0	40.00	0.024	1.667	40 / 200
4 EPS 035		20.0	50.00	0.035	1.429	41
5 Bitumendichtung		1100.0	2.50	0.170	0.015	80000
6 Beton armiert (mit 1% Stahl)	D	2300.0	200.00	2.300	0.087	80 / 130
7 XPS 040		30.0	100.00	0.040	2.500	41
Luftübergang Kaltseite R _{Se} 0.00						

 $U\text{-Wert} = 0.148 \text{ W/m}^2\text{K}$

Bauteildicke = 472.50 mm Flächengewicht = 572.3 kg/m^2 R = $6.59 \text{ m}^2\text{K/W}$

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 Tabelle 3, normale Bauteile (>=100kg/m²): Einsatzart: gedämmte Fußböden beheizter Aufenthaltsr. auf dem Erdreich

zur Berechnung herangezogenes Flächengewicht : 572.3 kg/m²
R an der ungünstigsten Stelle : 6.590 m²K/W
Grenzwert (Mindestwert) für R : 0.900 m²K/W

die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

Energieeinsparnachweis

nach der Energieeinsparverordnung EnEV 2009

vom 29.04.2009

KfW-Effizienzhaus 55 (EnEV₂₀₀₉)

öffentlich rechtlicher Nachweis

nach dem "Monatsbilanzverfahren" der DIN V 4108-6:2003-06

und Berechnung der Anlagentechnik nach DIN V 4701-10:2003-08

16.Jan 2014

Projekt Kurzbeschreibung: EFH Eilers / Wingbermühle

Bauvorhaben : Einfamilienhaus (183,6m² Wohnfläche) mit Garage, Baujahr 2011, 26127 OL

H'T=0,324 W/(m²K) mit dWB=0,10 W/(m²K); Gas-Brennwert, Lüftung WRG

Objektstandort Baujahr 2011

Straße/Hausnr.: Le-Corbusier-Str. 34 Plz/Ort : 26127 Oldenburg

Gemarkung : Eversten, Flur 18 Flurstücknummer: 149/25

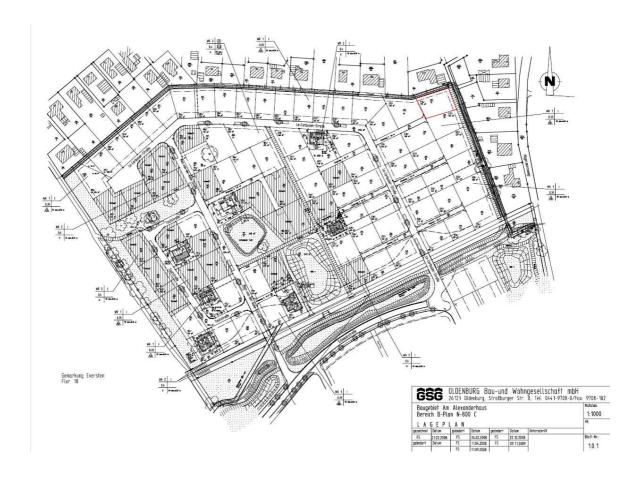
Hauseigentümer/Bauherr

Name/Firma : Jens Eilers, Dagmar Wingbermühle

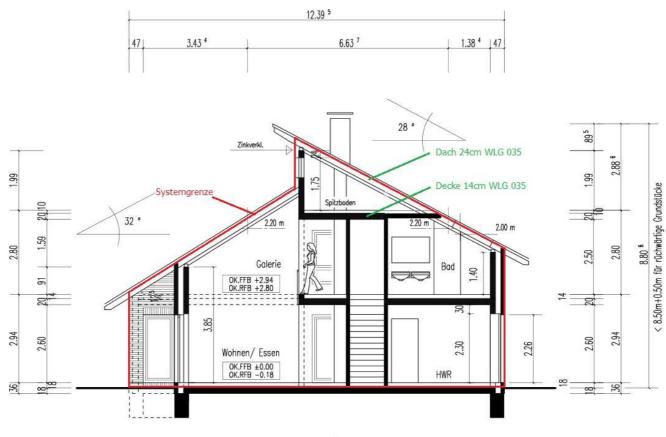
Straße/Hausnr.: Le-Corbusier-Str. 34 Plz/Ort : 26127 Oldenburg Telefon / Fax : 0441-2172990

GEBÄUDEHÜLLE

- Berücksichtigung Wärmebrücken (sämtliche Anschlußdetails): Delta Uwb=0,05 W/(m²K) Anschlußdetails sind konform Planungsbeispielen der DIN 4108 Bbl.2 auszuführen!
- 3-fach-verglaste Fenster mit Ug=0,7 W/(m²K) und Uf=1,0 W/(m²K) mit 7cm Rahmen Fenster: Uw nach DIN EN ISO 10077 berechnet
- Dachverglasung mit Ug=0,6W/(m²K), Uw=0,96W/(m²K)
- Dachfenster mit Uw=1,3 W/(m²K)
- alle Fenster verschattet: Alu-Außenrolläden
- Konstruktive Geschoßhöhe hg=2,98m, von OK Rohdecke EG zu OK Rohdecke OG
- Spitzboden innerhalb thermischer Hülle
- Aufbau Bodenplatte:
 - 10cm Perimeterdämmung, 20cm Beton, Abdichtung
- 5cm EPS WLG 035, 4cm PIR Alu-kaschiert WLS 024, 3cm EPS WLG 035, 5cm Estrich
- Dämmung in Dach: 24cm WLG 035 (Sparren- zu Gefachanteil: 10%); Decke 14cm WLG 035
- 47cm Außenwand: 17.5cm Porenbeton, 14cm WLG 035, 4cm Perlite, 11.5cm Verblender


ANLAGENTECHNIK

- Heizungsanlage: Gas-Brennwerttherme (innerhalb thermischer Hülle)
 - --> Wärmepumpe Wasser/Wasser
- Warmwasserbereitung, Speicher, solare Brauchwassernlage
 - --> Vaillant uniSTOR VIH R150
- Lüftung: Lüftungsanlage mit Wärmerückgewinnung
 - --> Vaillant recoVAIR VAR 275/3


Inhaltsverzeichnis

Energieeinsparnachweis	74
Lageskizze	
Systemgrenzskizze	77
Tabelle der verwendeten Bauteile	78
ENERGIEBILANZ	79
Endergebnis der EnEV-Berechnung	79
Effizienzlevel	
Endenergieverteilung	81
Ergebnisdaten für die KfW-Effizienzhaus-Formulare	82
KfW Effizienzhauslevel	82
Randbedingungen	82
Sommerlicher Wärmeschutz:	82
Anforderungen an die Dichtheit:	83
Luftdichtheitsprüfung nach Fertigstellung:	83
Gewinne und Verluste im einzelnen	83
Volumen und Flächen	83
allgemeine Projektdaten	84
Luftvolumenberechnung	84
Nutzflächenberechnung	84
interne Wärmegewinne pauschaler Ansatz	85
Wärmebrücken pauschal mit Nachweis nach DIN 4108, Bbl.2	
Luftwechsel	85
Klimaort	86
monatliches Temperaturmittel	86
monatliche Strahlungsintensität	86
Ausnutzungsgrad der Gewinne	86
monatliche Ausnutzungsgrade	86
Warmwasser	
Begrenzung der Leitungsverluste	87
Anlagenbewertung nach DIN 4701 Teil 10	88
TRINKWASSERERWÄRMUNG nach DIN 4701 TEIL 10	
HEIZUNG nach DIN 4701 TEIL 10	90
LÜFTUNG	91
Überprüfung des Mindestwärmeschutz aller Bauteile nach DIN 4108-2 2003-07	91
Sommerlicher Wärmeschutz nach DIN 4108-2 2003-07	92
Dampfdiffusionsnachweis	92
Bauteilverwendung und Flächenberechnung	93
Bauteile der Bauteilart: Wand	93
Bauteile der Bauteilart: Decke zum Dachge., Dach	94
Bauteile der Bauteilart: Grundfläche, Kellerdecke	95
Volumenberechnung des Gebäudes	
Schichtaufbau und U-Werte der verwendeten Bauteile	96
Außenwand	96
Außenwand First	96
Dach	97
Boden auf Erdreich	97

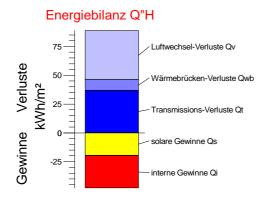
Lageskizze

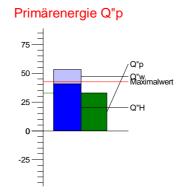
Systemgrenzskizze

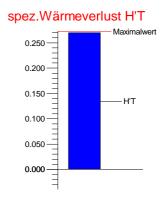
Schnitt

Tabelle der verwendeten Bauteile

	Bauteil	Fläche [m²]	U-Wert * Faktor [W/m²K]	Gewinn [kWh/a]	Verlust [kWh/a]
1	Wand	242.93	0.149	199	3174
2	Fenster, Fenstertüren	58.31	0.990	5503	5063
3	Decke zum Dachge., Dach	153.71	0.176	461	2376
4	Grundfläche, Kellerdecke	145.72	0.074		945
	Summe:	600.67	0.219	6162	11558


Jahresprimärenergiebedarf Q"P = 32.8 [kWh/m²a]


 $Q"Pmax = 42.6 [kWh/m^2a]$


spezifischer Transmissionswärmeverlust $H'T = 0.269 [W/m^2K]$

 $H'Tmax = 0.272 [W/m^2K]$

ENERGIEBILANZ

nutzbare Gewinne		[kWh/a]		Verluste		[kWh/a]						
solare Gewinne η*Q _s	:	5503		Transmission Q _t	:	11558						
interne Gewinne η*Q _i	:	7884		Wärmebrücken QwB	:	2634						
				Lüftungsverluste Q _v	:	11855						
				Nachtabsenkung Q _{NA}	:	-660						
				solar opake Bauteile $Q_{S\ opak}$:	-659						
		13387				24728						
==> Jahresheizwärmebedarf	==> Jahresheizwärmebedarf Q _h 11340 [kWh/a] + Trinkwassererwärmung Q _w 3487 [kWh/a]											

eine Nachtabschaltung wurde : berücksichtigt Anlagenaufwandszahl e_P : 0.618 Nutzfläche : $279.0 \, \mathrm{m}^2$ Gebäudeart : Wohngebäude Jahresheizwärmebedarf Q''_h : $40.65 \, \mathrm{kWh/m}^2 \mathrm{a}$

Endergebnis der EnEV-Berechnung

Jahres-Primärenergiebedarf Q"_P: bezogen auf die Gebäudenutzfläche maximal zulässiger Jahres-Primärenergiebedarf:

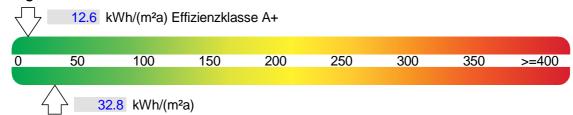
spezifischer Transmissionswärmeverlust H'_T: der Gebäudehüllfläche maximal zulässiger spezifischer Transmissionswärmeverlust:

32.8 [kWh/m²a]
42.6 [kWh/m²a]
77.4 [kWh/m²a]
0.269 [W/m²K]
0.272 [W/m²K]
0.388 [W/m ² K]
0.400 [W/m ² K]

57.6% besser als Neubau

für KfW-Effizienzhaus 55 nach EnEV

32.7% besser als Neubau 30.7% besser Ref-Gebäude für KfW-Effizienzhaus 55 vom Referenzgebäude nach EnEV

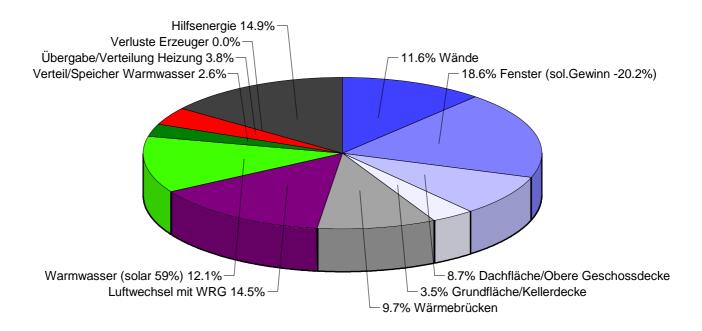

die maximal zulässigen Grenzwerte werden eingehalten.

Effizienzlevel

Optimierungsvariante EFH mit sol. Brauchwasseranl., WP, dWB=0,05 W/(m²K) [KfW55]

CO2-Emmissionen 7.8 [kg/(m^{2*}a)]

Endenergiebedarf



Primärenergiebedarf

Endenergieverteilung

Endenergieverteilung von EFH mit sol. Brauchwasseranl., WP, dWB=0,05 W/(m²K) [KfW55]

In der Grafik ist die prozentuale Verteilung der Endenergie zu sehen. Skaliert wurde alles auf den Heizwärmebedarf. Nutzbare interne und solare Wärmegewinne wurden bei den Transmissions- und Lüftungsverlusten berücksichtigt.

Ergebnisdaten für die KfW-Effizienzhaus-Formulare

Das beheizte Gebäudevolumen Ve nach der EnEV (Anlage 1 Nummer 1.3.2) beträgt: 871.7 m³ Die wärmeübertragende Umfassungsfläche A nach EnEV (Anlage 1 Nummer 1.3.1) beträgt: 600.7 m² Die Gebäudenutzfläche A_N nach der EnEV (Anlage 1 Nummer 1.3.3) beträgt: 279.0 m² Die in der Wärmeschutzberechnung berücksichtigte Fensterfläche beträgt: 54.6 m² Die (Außen-)Türfläche beträgt: 3.7 m² Gemäß EnEV Anlage 1 Tabelle 2 wurde folgender Gebäudetyp für das Wohngebäude angesetzt: freistehend

Die Berechnung erfolgt nach EnEV Anlage 1 Nummer 2.1.2 DIN 4108-6/DIN 4701-10

Name und Version der verwendeten EnEV Software: EnEV-Wärme&Dampf V14.22 der ROWA-Soft GmbH

Der Jahres-Primärenergiebedarf Qp für das Referenzgebäude (100 %-Wert)

nach EnEV Anlage 1, Tabelle 1 beträgt: 77.4 kWh/(m²a)

Der berechnete Jahres-Primärenergiebedarf Qp

nach EnEV für den Neubau beträgt: 32.8 kWh/(m²a) (57.56% besser als das Ref-Gebäude)

Der errechnete Höchstwert des auf die wärmeübertragende Umfassungsfläche des Gebäudes bezogenen spezifischen

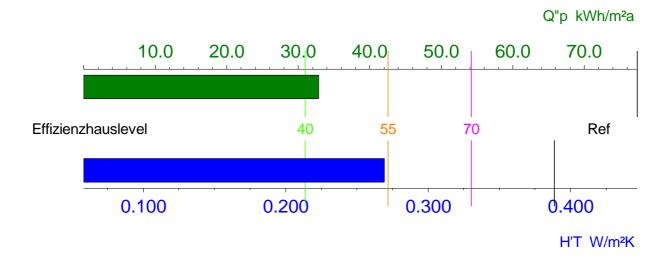
Transmissionswärmeverlustes H'T mit den Anforderungen für das Referenzgebäude (100%-Wert) nach

EnEV Anlage 1 Tabelle 1 beträgt: 0.388 W/(m2K)

Der berechnete auf die wärmeübertragende Umfassungsfläche des Gebäudes bezogene spezifische

Transmissionswärmeverlust H'T nach EnEV für den Neubau beträgt: 0.269 W/(m2K) (30.66% besser als das Ref-Gebäude)

Gleichzeitig wird der in der Tabelle 2 der Anlage 1 der EnEV2009 angegebene Höchstwert


des Transmissionswärmeverlustes HT' von: 0.400 W/(m²K)

nicht überschritten.

Der Wärmebrückenaufschlag in diesem Projekt beträgt: $0.050 \text{ W/(m}^2\text{K})$

Der Deckungsanteil der solarthermischer Trinkwasserbereitung beträgt: 58.8 % Art der Kollektoren: Flachkollektor Größe der Kollektoren: $8.1 \, \text{m}^2$

KfW Effizienzhauslevel

Randbedingungen

Sommerlicher Wärmeschutz:

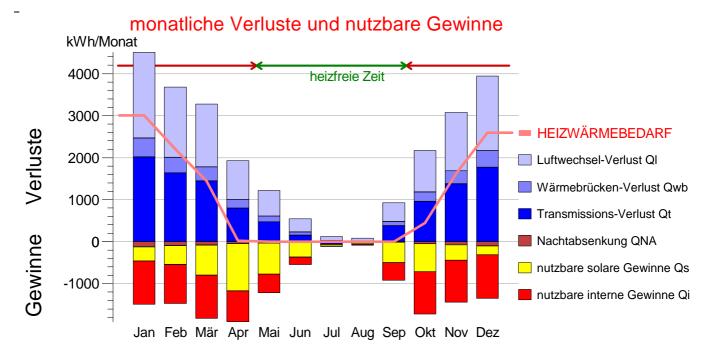
Bei dem Gebäude handelt es sich um ein Ein- oder Zweifamilienhaus, dessen Fenster in Ost-, Süd-, und Westrichtung mit außenliegenden Sonnenschutzvorrichtungen mit einem Abminderungsfaktor Fc<=0,3 ausgestattet werden/sind (Rolläden, Fensterläden, außenliegende Jalousien mit Lamellen oder Stoffe mit geringer Transparenz). Nach DIN 4108-2 2003-07 Absatz 8.3 kann in diesem Fall auf einen detaillierten Nachweis verzichtet werden.

Anforderungen an die Dichtheit:

Außen liegende Fenster, Fenstertüren und Dachflächenfenster müssen den Klassen nach EnEV Anlage 4 Tabelle 1 entsprechen. Für dies Gebäude ist die Klasse 2 der Fugendurchlässigkeit nach DIN EN 12207-1:2000-06 einzuhalten.

Die Luftdichtheit der Wände, des Daches, des unteren Gebäudeabschlusses, der Anschlüsse und Fugen muss nach den anerkannten Regeln der Technik gewährleistet werden (§6 der Energieeinsparverordnung).

Luftdichtheitsprüfung nach Fertigstellung:


Die Überprüfung der Dichtheit erfolgt nach §6 Abs. 1 der EnEV nach Fertigstellung des Gebäudes. Es darf der nach DIN EN 13829:20001-2 gemessene Volumenstrom, bei einer Druckdifferenz von 50 Pa, den Wert 1.5 1/h nicht überschreiten. Der Luftdichtheitsnachweis (Messprotokoll) wird diesem Dokument später beigefügt!

Gewinne und Verluste im einzelnen

kWh/Monat	Jan	Feb	März	April	Mai	Juni	Juli	Aug	Sep	Okt	Nov	Dez	gesamt
Ausnutzgrad η	1.000	1.000	0.999	0.727	0.430	0.180	0.016	0.020	0.423	0.975	1.000	1.000	
Q verlust	4384	3581	3194	1880	1189	532	51	50	901	2123	3001	3843	24728
Q Gewinn	1375	1381	1755	2553	2767	2961	3111	2542	2131	1719	1371	1250	24918
η * Q Gewinn	1375	1381	1753	1857	1189	532	51	50	901	1677	1371	1250	13387
$Q_{h,M}$	3009	2200	1441	23	0	0	0	0	0	446	1630	2593	11340
Verluste im einzelnen	aufgeschlü	sselt											
Q_{T}	1990	1629	1461	901	598	313	98	69	436	971	1357	1735	11558
Q _{S opak}	-24	-6	17	103	127	157	165	101	59	12	-18	-34	659
QNA Nachtabs.	125	97	81	48	32	17	5	4	23	52	75	102	660
$Q_{T^{-}}Q_{NA^{-}}Q_{Sopak}$	1889	1539	1363	750	439	139	-72	-36	354	907	1300	1667	10238
Q_{WB}	454	371	333	205	136	71	22	16	99	221	309	396	2634
Q_{L}	2041	1671	1498	924	613	321	101	70	448	995	1392	1780	11855
Gewinne im einzelnen	aufgeschli	isselt											
Qs	337	444	717	1549	1729	1957	2074	1504	1127	682	367	212	12700
Qi	1038	937	1038	1004	1038	1004	1038	1038	1004	1038	1004	1038	12218
Die äquivalente Heizg	radtagezah	l ermittelt	aus dem e	nergetisch	nen Nivea	u des Geb	iudes					•	
Heiz-Gt	629	515	462	285	0	0	0	0	0	307	429	549	3176

Volumen und Flächen

Fensterflächenanteil f : 12.8 % (nach EnEV 2002-2007 Anhang 1 Absatz 2.8)

allgemeine Projektdaten

 $Temperatur \ Warmseite \ \vartheta_i \\ \hspace{2cm} : 19^{\circ}C \ (normale \ Innenraum temperatur >= 19 \ ^{\circ}C \ nach \ Anhang \ 1 \ der \ EnEV)$

Gebäudeart : Wohngebäude
Warmwasseraufbereitung : zentral
Bauart : ein Massivbau
das Gebäude ist : ein Neubau

das Gebäude ist um : 0.0° aus der Nord-Süd-Richtung gedreht.

Luftvolumenberechnung

Gebäudeart : es handelt sich um ein Gebäude mit bis zu drei Vollgeschossen und nicht

mehr als zwei Wohnungen oder um ein Ein- oder Zweifamilienhaus bis zu

 $2\ Vollgeschossen\ und\ nicht\ mehr\ als\ 3\ Wohneinheiten$

Gebäudevolumen V_e : 871.7 m^3

Luftvolumen : 662.5 m³ 0,76 * Gebäudevolumen

Nutzflächenberechnung

Gebäudehöhe : 8.50 mGeschoßanzahl : 2Gebäudegrundfläche : 145.7 m^2 Grundflächenumfang : 52.9 m

Gebäudenutzfläche : 279.0 m² 0.32 * Gebäudevolumen

interne Wärmegewinne pauschaler Ansatz

in Wohngebäuden 24h/Tag 5W/m² 120 Wh/m² pro Tag bei einer Nutzfläche von 279 m² ==> 33 kWh/Tag

 $Q_i = \qquad \qquad 12218 \ kWh/a \qquad \qquad [\ 1004 \ kWh/Monat \]$

davon nutzbare Wärmegewinne Q_i= 7884 kWh/a

Wärmebrücken pauschal mit Nachweis nach DIN 4108, Bbl.2

 $0.219 \ W/m^2K$

0.269 W/m²K 22.79 %

Es wurden ausschließlich wärmetechnisch äquivalente Konstruktionen nach DIN 4108, Bbl.2 verwendet.

Bei der Berechnung des Verlustes durch die Wärmebrücken wurde bei jedem verwendeten Bauteil ein Aufschlag auf den U-Wert von 0,05 W/m²K, berücksichtigt.

Dabei wurden 0.0 m² Oberfläche ausgenommen (z.B. Vorhangfassade).

ursprünglicher mittlerer U-Wert neuer mittlere U-Wert

Transmissionsverlust erhöht sich um

Qwb = 2634 kWh/a

[Abminderungsfaktoren sind berücksichtigt]

Luftwechsel

Lüftungsverluste Q_v 1855 kWh/a

Luftvolumen: 662.5 m^3 Luftwechselrate: 0.60 h^{-1}

Art der Lüftung: maschinelle Lüftung mit Wärmetauscher

 $\begin{array}{ll} \mbox{Nutzungsfaktor des Abluft-Zuluft-Wärmetauschersystems} \ \eta_{\nu} : & 0 \ \% \\ \mbox{Anlagenluftwechsel n_{Anl}:} & 0.40 \ h^{-1} \\ \mbox{Luftwechsel infolge Undichtheiten inkl. Fensteröffnungen n_x:} & 0.20 \ h^{-1} \end{array}$

Die genaue Berechnung der Lüftungsanlage erfolgt über die DIN 4701-10 Anlagenverordnung, dort werden auch mögliche Wärmerückgewinne berücksichtigt.

Die Luftwechselverluste des Gebäudes sind weiterhin über die DIN 4108-06 zu berücksichtigen.

Luftwechselverluste in kWh

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
2041	1671	1498	924	613	321	101	70	448	995	1392	1780

Klimaort

Es wurden Solar- und Klimadaten vom "mittleren Standort Deutschland " verwendet.

Solar-Referenzort: mittlerer Standort Deutschland Temperatur-Referenzort: mittlerer Standort Deutschland

monatliches Temperaturmittel

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
-1.3	0.6	4.1	9.5	12.9	15.7	18.0	18.3	14.4	9.1	4.7	1.3

monatliche Strahlungsintensität

	Strahlungsintensitäten die für die Berechnung benötigten Richtungen und Neigungen in W/m²														
Richtung	Neig.	Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez		
Süd-Ost	90°	44	52	70	140	132	146	153	120	109	69	44	26		
West	30°	33	51	78	181	199	238	240	170	129	72	38	21		
West	90°	25	37	53	125	131	150	156	115	90	51	28	15		
Nord-Ost	30°	22	39	63	151	180	222	221	150	105	57	28	16		
Nord-Ost	90°	14	25	38	89	105	124	128	90	62	35	18	10		
Nord	90°	14	23	34	64	81	99	100	70	48	33	18	10		

Ausnutzungsgrad der Gewinne

Für die Berechnung des Ausnutzungsgrades η solarer und interner Wärmegewinne wurde der vereinfachte Ansatz verwendet.

die Bauart ist: ein Massivbau Speicherfähigkeit: 50.00 Wh/m³K Volumen: 872 m³ C_{wirk} : 43587 Wh/K spezifischer Wärmeverlust H: 297 W/K

monatliche Ausnutzungsgrade

Jan	Feb	Mär	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
1.000	1.000	0.999	0.727	0.430	0.180	0.016	0.020	0.423	0.975	1.000	1.000

Warmwasser

Warmwasser pauschal (12,5KWh/m²a)

Energiebedarf für die Warmwasseraufbereitung $Q_{\rm w}~3487~kWh/a$

Begrenzung der Leitungsverluste

Die Wärmeabgabe der Wärme- und Warmwasserverteilungsleitungen ist gem. § 14 Abs.5 i.V.m.Anhang 5 EnEV wie folgt zu begrenzen:

Die Wallieueg	abe der Wärme- und Warmwasserverteilungsleitungen ist gem. § 14 Abs.5 i.V.m.Anhang 5 Er	Mindestdicke der Dämm-
		schicht, bezogen auf eine
	Art der	Wärmeleitfähigkeit von
7.11		č
Zeile	der Leitungen/Armaturen	0,035
		W/(m ² .K)
1	Innendurchmesser bis 22 mm	20 mm
2	Innendurchmesser über 22 mm bis 35 mm	30 mm
3	Innendurchmesser über 34 mm bis 100 mm	gleich Innendurchmesser
4	Innendurchmesser über 100 mm	100 mm
	Leitungen und Armaturen nach den Zeilen 1 bis 4 in	
	Wand- und Deckendurchbrüchen, im	
5	Kreuzungsbereich von Leitungen, an	1/2 der Anforderungen
	Leitungsverbindungsstellen, bei zentralen	der Zeilen 1 bis 4
	Leitungsnetzverteilern	
	Leitungen von Zentralheizungen nach den Zeilen 1	
6	bis 4, die nach dem 31.Januar 2002 in	1/2 der Anforderungen
	Bauteilen zwischen beheizten Räumen	der Zeilen 1 bis 4
	verschiedener Nutzer verlegt werden.	
7	Leitungen nach Zeile 6 im Fußbodenaufbau	6 mm
	Kälteverteilungs- und Kaltwasserleitungen	
8	sowie Armaturen von Raumlufttechnik- und	6 mm
	Klimakältesystemen	

Anlagenbewertung nach DIN 4701 Teil 10

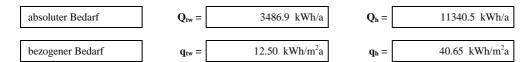
für ein Gebäude mit normalen Innentemperaturen

Bezeichnung des Gebäudes: EFH Eilers / Wingbermühle

Ort: 26127 Oldenburg

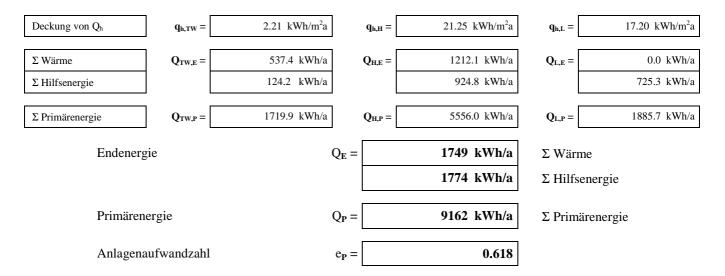
Gemarkung: Eversten, Flur 18

Straße/Nr.:Le-Corbusier-Str. 34


Flurstücknummer: 149/25

I.Eingaben

Trinkwasser- Heizung Lüftung


Erwärmung

II.Systembeschreibung

Details siehe Trinkwasser- Heizungs- und Lüftungsbeschreibung

III.Ergebnisse

Bereich 1:		Anteil 100.0 %		Nutzfläche 279.0 m ²		
		Wärmeverlust		Hilfsenergie		Heizwärmegutschrifte
Verlust aus EnEV:	$q_{\rm tw} =$	12.50 kWh/m²a				
Übergabe:	$q_{\rm TW,ce} =$	$0.00 \text{ kWh/m}^2\text{a}$	$q_{\text{TW,ce,HE}} =$	0.00 kWh/m	$q_{h,TW,ce} =$	0.00 kWh/m ² a
Verteilung:	$q_{TW,d} =$	3.41 kWh/m ² a	$q_{\text{TW,d,HE}} =$	0.00 kWh/m	$q_{h,TW,d} =$	1.54 kWh/m ² a
Verteilungsart:		gebäudezentrale Trinkwasse	eraufbereitung of	ne Zirkulation (max. 50	0 m² Nutzfläche)	
Verteilung des Trinkwasser die Stichleitungen werden r		ermischer Hülle gemeinsamen Installationsw	and in benachba	rte Räume geführt		
Speicherung:	$q_{\text{TW,s}} =$	1.53 kWh/m²a	$q_{TW,s,HE} =$	0.00 kWh/m	$q_{h,TW,s} =$	0.66 kWh/m ² a
Speicherart:	qıw,s	bivalenter Solarspeicher	¶IW,S,HE	0.00 1.11111	qn,1 w,s	0.00 11,111 11 11
der Speicher steht innerhalt	der thermisch					
Wärmeerzeuger:	$\Sigma =$	$10.26 \text{ kWh/m}^2\text{a}$	$q_{\text{TW,g,HE}} =$	$0.45 \text{ kWh/m}^2\text{a}$		
Wärmeerzeugerart:		solare Trinkwasser-Erwärm	ung			
Energieträgerart: Deckungsanteil		Solarenergie		58.8	%	
Aufwandzahl Erzeuger		$lpha_{ ext{TW,g}}$: $e_{ ext{TW,g}}$:		0.000	70	
Endenergie Erzeuger		$q_{\mathrm{TW,E}}$:		0.00	kWh/m²a	
Primärenergiefaktor Erzeug Primärenergie Erzeuger	ger	$egin{aligned} f_{\mathrm{p,i}}:\ q_{\mathrm{TW,P}}: \end{aligned}$		0.00 0.00	kWh/m²a	
solare Trinkwassererwärmu	ıng über :	qrw,p ·		Flachkollektor	K VV II/III u	
alpha1		$\alpha 1$:		0.588		
alpha2 Aufstellung innerhalb der t	hermischen Hi	α2 : ille (Speicher und Verteilung	ren ohne Zirkulat	0.950		
Wärmeerzeuger:	$\Sigma =$	6.82 kWh/m ² a	$q_{TW,g,HE} =$	0.46 kWh/m ² a		
Wärmeerzeugerart:	2 –	Heizungswärmepumpe Was		0.40 KWII/III a		
Energieträgerart:		Strom-Mix	ssel/ wassel			
Deckungsanteil		$lpha_{\text{TW,g}}$:		39.1	%	
Aufwandzahl Erzeuger Endenergie Erzeuger		e _{TW,g} :		0.230 1.57	kWh/m²a	
Primärenergiefaktor Erzeug	ger	$q_{TW,E}: \ f_{p,i}:$		2.60	K W II/III a	
Primärenergie Erzeuger		$q_{\mathrm{TW,P}}$:		4.08	kWh/m²a	
El. Heizungs-Wärmepumpe		<u> </u>		0.00 1 111 / 2		
Wärmeerzeuger:	$\Sigma =$	$0.36 \text{ kWh/m}^2\text{a}$	$q_{\mathrm{TW,g,HE}} =$	$0.00 \text{ kWh/m}^2\text{a}$		
Wärmeerzeugerart: Energieträgerart:		Elektro-Heizstab Strom-Mix				
Deckungsanteil		$\alpha_{\text{TW,g}}$:		2.1	%	
Aufwandzahl Erzeuger		$e_{TW,g}$:		1.000		
Endenergie Erzeuger Primärenergiefaktor Erzeug	roe.	$q_{\mathrm{TW,E}}$:		0.36 2.60	kWh/m²a	
Primärenergie Erzeuger	gei	$egin{aligned} f_{\mathrm{p,i}}:\ q_{\mathrm{TW,P}}: \end{aligned}$		0.93	kWh/m²a	
Hilfsenergie:		1	$\Sigma \; q_{TW,HE,E} =$	0.45 kWh/m	^{2}a	
Primärenergiefaktor Hilfser Primärenergie Hilfsenergie		$f_{p,H}$: $q_{\text{TW,HE,P}}$:		2.60 1.16	kWh/m²a	
Endergebnis Heizwa	ärmegutschrift	pro m ² :		$q_{ m h,TW}$, =	2.21 kWh/m
Wärmeendenergie pro m ²		$^{ m q}_{ m TW,E}$:		1.93 kWh/m	² a	
Hilfsendenergie pro m ²		q _{TW,HE,E} :		0.45 kWh/m	² a	
Primärenergie pro m ²		^q _{TW,P} :		6.17 kWh/m	^{2}a	
Wärmeendenergie		$Q_{\mathrm{TW,E}}$:		537.4 kWh	/a	
Hilfsendenergie		$Q_{TW,E}$:		124.2 kWh	/a	
~		~	1		1	

Hilfsendenergie

Primärenergie

		HEIZUNG nach	DIN 4701	TEIL 10		
Bereich 1:		Anteil 100.0 %		itzfläche 279.0 r	n^2	
		Wärmeverlust		Hilfsen	ergie	
Heizwärmebedarf	$q_h =$	40.65 kWh/m ² a				
Heizwärmegutschriften	q _{h,TW} =	2.21 kWh/m²a	vom Trinkw	accer		
Heizwärmegutschriften	$q_{h,L} =$	17.20 kWh/m²a		iftungsanlage		
			_			
Übergabe:	$q_{c,e} =$	$1.10 \text{ kWh/m}^2\text{a}$	$q_{\text{ce},\text{HE}} =$		wh/m²a	
		erte Heizflächen, Einzelraumre zung z.B. durch einen Ventilat		punktregler Scha	altdiff. 1°K	
Verteilung:	$q_d =$	$0.52 \text{ kWh/m}^2\text{a}$	$q_{\text{d},\text{HE}} =$	1.49 k	Wh/m ² a	
Verteilungsstränge (vertikal	befinden sich im	innerhalb der thermischen Hüll nerhalb der thermischen Hülle ne geregelte Pumpe eingesetzt 0.00 kWh/m²a		0.00 k	xWh/m²a	
Speicherart:	_	keine Speicherung	4s,ne		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Wärmeerzeuger:	$\Sigma =$	22.87 kWh/m ² a	$q_{g,HE} = 1$.82 kWh/m²a		
Wärmeerzeugerart:		Heizungswärmepumpe Wasser	/Wasser			
Energieträgerart:		Strom-Mix		100.0		
Deckungsanteil		$lpha_{\mathrm{H,g}}$:		100.0 0.190	%	
Aufwandzahl Erzeuger Endenergie Erzeuger		$ m e_g$: $ m q_E$:		4.35	ĿW	Vh/m
Primärenergiefaktor Erzeuge	ar .	f_p :		2.60	KW	V 11/ 111
Primärenergie Erzeuger	.1	тр. q _P :		11.30	kW	Vh/m
Hilfsenergie:		qr ·	$\Sigma q_{HE,E} =$		Wh/m ² a	
Primärenergiefaktor Hilfsen	ergie	$\mathrm{f}_{\mathrm{p,H}}$:	• ' _	2.60		
Primärenergie Hilfsenergie	orgie	$q_{\mathrm{HE,P}}$:		8.62	kW	Vh/m
Endergebnis						
Wärmeendenergie pro m ²		^q _{H,E} :		4.35 k	Wh/m²a	
Hilfsendenergie pro m ²		^q _{H,HE,E} :		3.32 k	Wh/m ² a	
Primärenergie pro m ²		$^{\rm q}_{\rm H,HE,P}$:		19.92 k	xWh/m ² a	
Wärmeendenergie		$\mathrm{Q}_{\mathrm{H,E}}$:		1212.1	kWh/a	

 $Q_{H,E}$:

 $Q_{H,P}$:

924.8 kWh/a 5556.0 kWh/a

		LÜ	FTUNG			
Bereich 1:		Anteil 100.0 %	Nutzfläch	ne 279.0 m ²		
		Wärmegewinn	V	Värmeverlust		Hilfsenergie
Übergabe:	$q_{ m L,ce} =$	-0.00 kWh/m ² a			$q_{L,ce,HE} =$	0.00 kWh/m ² a
Übergabeart: z.B.Lüftungsanlagen mit Wärm Anordnung der Luftauslässe üb	Wohnungs erückgewinnung (slüftungsanlagen < 20°C durch Wärmeüberträger			Tosco,	
Verteilung:	$q_{L,d} =$	$-0.00 \text{ kWh/m}^2\text{a}$			$q_{L,d,HE} = \\$	$0.00 \text{ kWh/m}^2\text{a}$
Verteilungsart:	Verlegun <u>g</u>	g der Verteilleitungen im	nerhalb der thermischer	n Hülle		
Luftwechselkorrektur:	$q_{h,n} =$	$-0.00 \text{ kWh/m}^2\text{a}$				
Anlagenluftwechsel: anrechenbare Heizarbeit: (qh-qi	$_{\text{L,g,WEWRG}}$ + $q_{ ext{h,n}})$			40 1/h (nA, _{norm} =0,4 3.5 kWh/m ² a	1/h)	
Ez WRG mit WÜT:	$q_{\rm L,g,WRG}$	$17.20 \text{ kWh/m}^2\text{a}$			$q_{L,g,HE,WRG}$	2.60 kWh/m ² a
Erzeugerart:	Abluft/Zuluft W	ärmeübertrager zentral,V	Virkungsgrad >=80% u	and DC-Ventilatoren		
Erzeuger L/L-WP:	$q_{L,g,WP}$	$0.00 \text{ kWh/m}^2\text{a}$	$q_{L,g,WP0}.00 \text{ kWh/m}^2 a$	$q_{L,g,\text{HE},\text{WP}}$		$0.00 \text{ kWh/m}^2\text{a}$
Erzeugerart:	keine Wärmepur	mpe	1			
Erzeuger Heizregister:	$q_{L,g,HR}$	$0.00 \text{ kWh/m}^2\text{a}$	$q_{L,g,HR0}.00 \text{ kWh/m}^2 \text{a}$	$q_{L,g,HE,HR} \\$		$0.00 \text{ kWh/m}^2\text{a}$
Erzeugerart:	kein Heizi	register	•			
Hilfsenergie:					$\Sigma \; q_{L,HE,E} =$	2.60 kWh/m ² a
Primärenergiefaktor Hilfsenerg Primärenergie Hilfsenergie	ie	$\begin{array}{c} f_{p,H}: \\ q_{\Lambda,HE,P}: \end{array}$		2.60 6.76 kWh/m²a		
Endergebnis						
Lüftungsbeitrag am Q _h :	$q_{h,L} =$	17.20 kWh/m ² a				
Wärmeendenergie pro m²		$^{ m q}_{ m L,E}$:		$0.00 \text{ kWh/m}^2\text{a}$		
Hilfsendenergie pro m ²		$^{ m q}_{ m L,HE,E}$:		2.60 kWh/m ² a		
Primärenergie pro m²		$^{q}_{L,HE,P}$:		6.76 kWh/m ² a		
Wärmeendenergie		$Q_{L,E}$:		0.0 kWh/a		
Hilfsendenergie		$Q_{L,E}$:		725.3 kWh/a		
Primärenergie		$Q_{\mathrm{L.P}}$:		1885.7 kWh/a		

Überprüfung des Mindestwärmeschutz aller Bauteile nach DIN 4108-2 2003-07

Bauteil	Flächen-	Innen-	R	Grenz-	Art	Ergebnis
	gewicht	raum-		wert		
	kg/m²	temp	m²K/W	m²K/W		
Außenwand	360.5	normal	6.62	1.20	*1	OK
Außenwand First	100.4	normal	2.17	1.20	*1	OK
Dach	86.6	normal	6.95	1.75	*8	OK
Boden auf Erdreich	572.3	normal	6.59	0.90	*1	OK

Art der Berechnung: nach DIN 4108-2:2003-07:

Sommerlicher Wärmeschutz nach DIN 4108-2 2003-07

Bei dem Gebäude handelt es sich um ein Ein- oder Zweifamilienhaus, dessen Fenster in Ost-, Süd-, und Westrichtung mit außenliegenden Sonnenschutzvorrichtungen mit einem Abminderungsfaktor Fc<=0,3 ausgestattet werden/sind (Rolläden, Fensterläden, außenliegende Jalousien mit Lamellen oder Stoffe mit geringer Transparent) .Nach DIN 4108-2 2003-07 Absatz 8.3 kann in diesem Fall auf ein detaillierten Nachweis verzichtet werden.

Dampfdiffusionsnachweis

Bauteil	Fall	Tauw.	Verd.	Rest	Schicht	OK
	R-Type	kg/m²	kg/m²	kg/m²		
Außenwand	D 1	0.615	0.505	0.110	3-4	nicht OK
Außenwand First	D 1	1.016	0.489	0.527	2-3	nicht OK
Balkenbereich	D 1	0.079	0.058	0.022	2-3	nicht OK
Dach	B 3	0.006	0.006		3/4	OK
Balkenbereich	B 3	0.005	0.006		3/4	OK
Randbedingungen der Dampfdiffusionsl	berechnung					
Randbedingungen der Dampfdiffusionsb R-Type	oerechnung °C warm	°C kalt	% warm	% kalt	Stunden	°C Dach
	C	°C kalt	% warm	% kalt	Stunden	°C Dach
R-Type	C	°C kalt	% warm 50	% kalt 80	Stunden 1440	°C Dach
R-Type Type 1 normale Außenwand	°C warm					°C Dach
R-Type Type 1 normale Außenwand Tauperiode	°C warm	-10	50	80	1440	°C Dach
R-Type Type 1 normale Außenwand Tauperiode Verdunstungsperiode	°C warm	-10	50	80	1440	°C Dach

^{*1} Tabelle 3, normale Bauteile >=100kg/m²

^{*8} Gefachbauteil mit weniger als 100 kg Flächengewicht

Bauteilverwendung und Flächenberechnung

Bauteile der Bauteilart: Wand

Bauteil/Einsatzart	U-Wert	Fläche
normale Außenwand beheizter Räume Faktor = 1.00 R _{Si} = 0.13 R _{Se} = 0.04 R = 6.62 Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = 158° SSO Neig = 90° senkrecht Außenwand Bez.: AwSüdost 78,39	0.15 W/m²K	78.39 m²
"Eigene Fenster" Haustür B x H : 1.64 m x 2.26 m 1 Stück 3.71 m² Glas+Ra. : U-Wert = 1.70 W/m²K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S = 0.900 F_F = 0.700 F_C = 1.000	1.70 W/m²K	-3.71 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,51*1,01} \\ \text{B x H}: \ 1.01 \text{ m x 1.51 m} \ 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.88 \text{ W/m}^2\text{K (Herstellerangabe)} \ \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_\text{S}{=}0.900 \ F_\text{F}{=}0.700 \ F_\text{C}{=}1.000 \ \text{sommerlicher Sonnenschutz} \ R_\text{e}{=}0.60 \ T_\text{e}{=}0.25 \\ \end{array} $	0.88 W/m²K	-1.53 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0} \dots 2.26*1,01 \\ \text{B x H}: \ 1.01 \text{ m x } 2.26 \text{ m} \ 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.87 \text{ W/m}^2\text{K (Herstellerangabe)} \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_\text{S}{=}0.900 F_\text{F}{=}0.700 F_\text{C}{=}1.000 \text{sommerlicher Sonnenschutz} R_\text{e}{=}0.60 T_\text{e}{=}0.25 \\ \end{array} $	0.87 W/m²K	-2.28 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,32*1,64} \\ \text{B x H}: \ 1.64 \text{ m x 1.32 m} \ 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.85 \text{ W/m}^2 \text{K (Herstellerangabe)} \ \text{g-Wert} = 50 \% \\ \text{Verschattung: } F_\text{S}{=}0.900 \ F_\text{F}{=}0.700 \ \text{F}_\text{C}{=}1.000 \ \text{sommerlicher Sonnenschutz} \ R_\text{e}{=}0.60 \ T_\text{e}{=}0.25 \\ \end{array} $	0.85 W/m²K	-2.16 m ²
		68.71 m²
normale Außenwand beheizter Räume $Faktor = 1.00 R_{Si} = 0.13 R_{Se} = 0.04 R = 6.62$ Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = -113° WSW Neig = 90° senkrecht Außenwand Bez.: AwSüdWest	0.15 W/m²K	49.05 m²
49,05		
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 2,26*2,01} \\ \text{B x H : } 2.01 \text{ m x 2.26 m} \text{2 Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.81 \text{ W/m}^2\text{K (Herstellerangabe)} \text{g-Wert} = 50 \text{ \%} \\ \text{Verschattung: } F_\text{S}{=}0.900 F_\text{F}{=}0.700 F_\text{C}{=}1.000 \text{sommerlicher Sonnenschutz} R_\text{e}{=}0.60 T_\text{e}{=}0.25 \\ \end{array} $	0.81 W/m²K	-9.09 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 2,26*3,01} \\ \text{B x H : } 3.01 \text{ m x 2.26 m} 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.79 \text{ W/m}^2\text{K (Herstellerangabe)} \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_s{=}0.900 F_r{=}0.700 F_c{=}1.000 \text{sommerlicher Sonnenschutz} R_r{=}0.60 T_r{=}0.25 \\ \end{array} $	0.79 W/m²K	-6.80 m²
		33.16 m²

normale Außenwand beheizter Räume

by Elinaminemiaus Le Corbusier Str. 54 20127 Oldenburg	21. Januar 2014	
Faktor = 1.00 R _{Si} = 0.13 R _{Se} = 0.04 R = 5.80 Strahlungsabsorbtionsgrad α = 0.50 heller Anstrich (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = -113° WSW Neig = 90° senkrecht Außenwand First Bez.: AwSüdWest2	0.17 W/m²K	22.22 m²
22,22 Flächenanteil des Feldbereiches 90.00 % 90		
"Eigene Fenster" Ug=0,7 / Uf=1,0 0,69*1,01 B x H: 1.01 m x 0.69 m 3 Stück Glas+Ra. : U-Wert = 0.96 W/m²K (Herstellerangabe) g-Wert = 50 %	$0.96~\mathrm{W/m^2K}$	-2.09 m²
Verschattung: F_s =0.900 F_r =0.700 F_c =1.000 sommerlicher Sonnenschutz R_e =0.60 T_e =0.25		20.13 m ²
normale Außenwand beheizter Räume Faktor = $1.00~R_{Si} = 0.13~R_{Se} = 0.04~R = 6.62$ Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80		
Richt. = -23° NNW Neig = 90° senkrecht Außenwand 78,39 Bez.: AwNordwest	$0.15~\mathrm{W/m^2K}$	78.39 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,32*1,01} \\ \text{B x H}: 1.01 \text{ m x 1.32 m} 2 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.89 \text{ W/m}^2\text{K (Herstellerangabe)} \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_\text{S}{=}0.900 F_\text{F}{=}0.700 F_\text{C}{=}1.000 \text{sommerlicher Sonnenschutz} R_\text{e}{=}0.60 T_\text{e}{=}0.25 \\ \end{array} $	0.89 W/m²K	-2.67 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,7 / Uf=1,0 1,32*1,64} \\ \text{B x H}: \ \ 1.64 \text{ m x 1.32 m} 1 \text{ Stück} \\ \text{Glas+Ra.} \qquad : \text{U-Wert} = 0.85 \text{ W/m}^2\text{K (Herstellerangabe)} \text{g-Wert} = 50 \text{ %} \\ \text{Verschattung: } F_\text{S}{=}0.900 \ \ F_\text{F}{=}0.700 \ \ F_\text{C}{=}1.000 \text{sommerlicher Sonnenschutz} R_\text{e}{=}0.60 \ \ T_\text{e}{=}0.25 \\ \end{array} $	0.85 W/m²K	-2.16 m²
"Eigene Fenster" Ug=0,7 / Uf=1,0 2,26*1,64 B x H: 1.64 m x 2.26 m 1 Stück Glas+Ra. : U-Wert = 0.82 W/m²K (Herstellerangabe) g-Wert = 50 % Verschetzung F. 0.000 F. 0.700 F. 1.000 generalische Sensonschaft P. 0.00 T. 0.25	0.82 W/m²K	-3.71 m²
Verschattung: F_s =0.900 F_r =0.700 F_c =1.000 sommerlicher Sonnenschutz R_e =0.60 T_e =0.25		69.85 m²
normale Außenwand beheizter Räume $Faktor = 1.00 R_{Si} = 0.13 R_{Se} = 0.04 R = 6.62$ Strahlungsabsorbtionsgrad α = 0.50 Klinkermauerwerk (öffentlich rechtlich) Emissionsgrad ϵ = 0.80 Richt. = 68° ONO Neig = 90° senkrecht		
Außenwand Bez.: AwNordOst 59,23	0.15 W/m²K	59.23 m ²
"Eigene Fenster" Nebentür B x H : 1.01 m x 2.26 m 1 Stück 2.28 m² Glas+Ra. : U-Wert = 1.70 W/m²K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 sommerlicher Sonnenschutz R_e =0.60 T_e =0.50	1.70 W/m²K	-2.28 m²
"Eigene Fenster" Ug=0,7 / Uf=1,01,32*0,89 B x H: 0.89 m x 1.32 m 5 Stück 5.87 m ² Glas+Ra. : U-Wert = 0.91 W/m ² K (Herstellerangabe) g-Wert = 50 %	0.91 W/m²K	-5.87 m²
Verschattung: F_S =0.900 F_F =0.700 F_C =1.000 sommerlicher Sonnenschutz R_e =0.60 T_e =0.25		51.07 m²
		

Bauteile der Bauteilart: Decke zum Dachge., Dach

Bauteil/Einsatzart U-Wert Fläche

Dach/Decke gegen Außenluft

			_
$\label{eq:saker} Faktor = 1.00 R_{Si} = 0.10 R_{Se} = 0.04 R = 5.54$ Strahlungsabsorbtionsgrad $\alpha = 0.80$ dunkle Oberfläche (öffentlich rechtlich) Richt. = -113° WSW	Emissionsgrad ε= 0.80 Bez.: DaSüdWest	$0.18~\mathrm{W/m^2K}$	66.76 m²
"Eigene Fenster" $ \begin{array}{l} \text{Ug=0,6 Uf=1,7 Dachverglasung} \\ \text{B x H}: & 0.83 \text{ m x } 3.68 \text{ m} & 3 \text{ Stück} \\ \text{Glas+Ra.} & : \text{U-Wert} = 0.96 \text{ W/m}^2\text{K (Herstellerangabe)} \text{ g-Wert} = 49 \% \\ \text{Verschattung: } F_S{=}0.900 \ F_F{=}0.700 \ F_C{=}1.000 \ \text{ sommerlicher Sonnenschutz} \\ \end{array} $	R_e =0.30 T_e =0.25	0.96 W/m ² K	-9.16 m²
"Dachfenster" zertifiziertes Dachfenster 1,3 B x H : 0.75 m x 1.40 m 2 Stück 2.10 m² Glas+Ra. : U-Wert = 1.30 W/m²K (Herstellerangabe) g-Wert = 60 % Verschattung: F_S = 0.900 F_F = 0.700 F_C = 1.000 sommerlicher Sonnenschutz	R _e =0.30 T _e =0.25	1.30 W/m²K	-2.10 m ²
		l .	00100
Dach/Decke gegen Außenluft Faktor = 1.00 R _{Si} = 0.10 R _{Se} = 0.04 R = 5.54 Strahlungsabsorbtionsgrad α = 0.80 dunkle Oberfläche (öffentlich rechtlich) Richt. = 68° ONO Neig = 28°	Emissionsgrad ε = 0.80		
Dach 100,91 Flächenanteil des Feldbereiches 90.00 % 90	Bez.: DaNordOst	0.18 W/m ² K	100.91 m²
"Dachfenster" zertifiziertes Dachfenster 1,3 B x H : 0.75 m x 1.20 m 3 Stück 2.70 m ² Glas+Ra. : U-Wert = 1.30 W/m ² K (Herstellerangabe) g-Wert = 60 % Verschattung: F_8 = 0.900 F_p = 0.700 F_c = 1.000 sommerlicher Sonnenschutz	D _0.20 T _0.25	1.30 W/m²K	-2.70 m²
verschattung. 15-0.700 17-0.700 17c-1.000 Sommericher Sommenschutz	N _e -0.30 1 _e -0.23		98.21 m²

Bauteile der Bauteilart: Grundfläche, Kellerdecke

Bauteil/Einsatzart		U-Wert	Fläche
gedämmte Fußböden beheizter Aufenthaltsr. auf dem Erdreich			
Faktor = 0.50 keine Randdämmung B'=5.5 m $R_{Si} = 0.17$ $R_{Se} = 0.0$	R = 6.59		
Richt. = 0° Neig = 0° waagerecht			
Boden auf Erdreich	Bez.: Grundfläche	$0.15 \text{ W/m}^2\text{K}$	145.72 m ²
145,72			
			145.72 m ²

Volumenberechnung des Gebäudes

871,73	=	871.7 m ³
		871.7 m ³

Schichtaufbau und U-Werte der verwendeten Bauteile

	222.80 m²	$U\text{-Wert} = 0.147 \text{ W/m}^2\text{K}$
Außenwand		

Material	Dichte [kg/m³]	Dicke s [mm]	$\begin{matrix} \lambda \\ [W/mK] \end{matrix}$	R [m ² K/W]	Diff Wid.
Luftübergang Warmseite R _{Si} 0.13					
1 Kalkzementputz	1800.0	15.00	0.870	0.017	15 / 35
2 Ytong-Planblock PPW2-0,40	500.0	175.00	0.100	1.750	5
3 Glaswolle 035 D	250.0	140.00	0.035	4.000	1
4 Perlite	100.0	40.00	0.055	0.727	5
5 Vollklinker	1800.0	115.00	0.910	0.126	50 / 100
Luftübergang Kaltseite R _{Se} 0.04					

Bauteildicke = 485.00 mm Flächengewicht = 360.5 kg/m^2 R = $6.62 \text{ m}^2\text{K/W}$

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 Tabelle 3, normale Bauteile (>=100kg/m²):

Einsatzart: normale Außenwand beheizter Räume

die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

20.13 m² U-Wert = 0.168 W/m²K **Außenwand First**

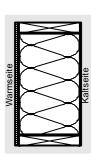
		Das Bau	teil besitzt 2 S	chichtbereiche		
		Dichte	Dicke	λ	R	Diff Wid.
Material		$[kg/m^3]$	s [mm]	[W/mK]	$[m^2K/W]$	
Aufbau des Feldbereichs	90.0 %					
Luftübergang Warmseite R _{Si} 0.13						
F1 OSB-Platten		650.0	20.00	0.130	0.154	30 / 50
F2 Glaswolle 035		250.0	240.00	0.035	6.857	1
F3 Fichte, Kiefer, Tanne	D	600.0	20.00	0.130	0.154	40
F4 Abdichtung		1000.0	2.00	0.170	0.012	600000
F5 Zink		7200.0	0.70	110.000	0.000	999999
uftübergang Kaltseite R _{Se} 0.04						
ıfbau des Balkenbereichs	10.0 %					
uftübergang Warmseite R _{Si} 0.13						
31 OSB-Platten		650.0	20.00	0.130	0.154	30 / 50
32 Fichte, Kiefer, Tanne		600.0	240.00	0.130	1.846	40
33 Fichte, Kiefer, Tanne	D	600.0	20.00	0.130	0.154	40
B4 Abdichtung		1000.0	2.00	0.170	0.012	600000
B5 Zink		7200.0	0.70	110.000	0.000	999999
Luftübergang Kaltseite R _{Se} 0.04						

U-Wert-Berechnung inhomogener Bauteile nach DIN EN ISO 6946

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 Tabelle 3, normale Bauteile (>=100kg/m²):

Einsatzart: normale Außenwand beheizter Räume

zur Berechnung herangezogenes Flächengewicht : 100.4 kg/m²


R an der ungünstigsten Stelle : 2.166 m²K/W (Balkenbereich)

Grenzwert (Mindestwert) für R : 1.200 m²K/W

die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

	153.71 m²	$U\text{-Wert} = 0.176 \text{ W/m}^2\text{K}$
Dach		

	Das Bauteil besitzt 2 Schichtbereiche					
Matarial		Dichte	Dicke	λ	R	Diff Wid.
Material	00.004	[kg/m³]	s [mm]	[W/mK]	$[m^2K/W]$	
Aufbau des Feldbereichs	90.0 %					
Luftübergang Warmseite R _{Si} 0.10						
F1 Gipskarton DIN 18180	D	900.0	12.50	0.210	0.060	8
F2 Dörken Delta Reflex Plus		1100.0	4.00	0.170	0.024	37500
F3 Glaswolle 035		250.0	240.00	0.035	6.857	1
F4 Dörken Delta Maxx		1000.0	2.50	0.170	0.015	600000
Luftübergang Kaltseite R _{Se} 0.04						
Aufbau des Balkenbereichs	10.0 %					
Luftübergang Warmseite R _{Si} 0.10						
B1 Gipskarton DIN 18180	D	900.0	12.50	0.210	0.060	8
B2 Dörken Delta Reflex Plus		1100.0	4.00	0.170	0.024	37500
B3 Fichte, Kiefer, Tanne		600.0	240.00	0.130	1.846	40
B4 Dörken Delta Maxx		1000.0	2.50	0.170	0.015	600000
Luftübergang Kaltseite R _{Se} 0.04						

U-Wert-Berechnung inhomogener Bauteile nach DIN EN ISO 6946

Bauteildicke	Feldanteil	Flächengewicht	U-Wert	R_{T}	R_T '	R_T "
259.00 mm	90.0 %	86.6 kg/m ²	$0.176 \text{ W/m}^2\text{K}$	$5.68 \text{ m}^2\text{K/W}$	5.72 m ² K/W	5.63 m ² K/W

145.72 m²

Überprüfung des Mindestwärmeschutzes nach DIN 4108-2:2003-7 leichte Bauteile (<100kg/m²):

der Wärmedurchlasswiderstand des Feldbereichs und der mittlere Wärmeduchlasswiderstand wurden überprüft

zur Berechnung herangezogenes Flächengewicht : $86.6 \, \text{kg/m}^2$

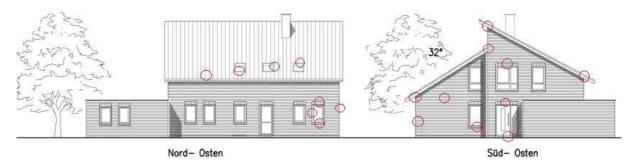
die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

Boden auf Erdreich

$Material \\ Luftübergang Warmseite RSi 0.17$	Dichte [kg/m³]	Dicke s [mm]	$\begin{matrix} \lambda \\ [W/mK] \end{matrix}$	R [m²K/W]	Diff Wid.
1 Zementestrich D	2000.0	50.00	1.400	0.036	15 / 35
2 EPS 035	20.0	30.00	0.035	0.857	41
3 PUR 024 - beidseitig Alu -	125.0	40.00	0.024	1.667	40 / 200
4 EPS 035	20.0	50.00	0.035	1.429	41
5 Bitumendichtung	1100.0	2.50	0.170	0.015	80000
6 Beton armiert (mit 1% Stahl) D	2300.0	200.00	2.300	0.087	80 / 130
7 XPS 040	30.0	100.00	0.040	2.500	41
Luftübergang Kaltseite R _{Se} 0.00					

Bauteildicke = 472.50 mm Flächengewicht = 572.3 kg/m^2 R = $6.59 \text{ m}^2\text{K/W}$

 $\label{thm:continuous} \ddot{U} berprüfung \ des \ Mindestwärmeschutzes \ nach \ DIN \ 4108-2:2003-7 \ Tabelle \ 3, \ normale \ Bauteile \ (>=100 kg/m^2):$


Einsatzart: gedämmte Fußböden beheizter Aufenthaltsr. auf dem Erdreich zur Berechnung herangezogenes Flächengewicht : 572.3 kg/m² R an der ungünstigsten Stelle : 6.590 m²K/W Grenzwert (Mindestwert) für R : 0.900 m²K/W

die Anforderungen sind nach DIN 4108-2:2003-7 erfüllt

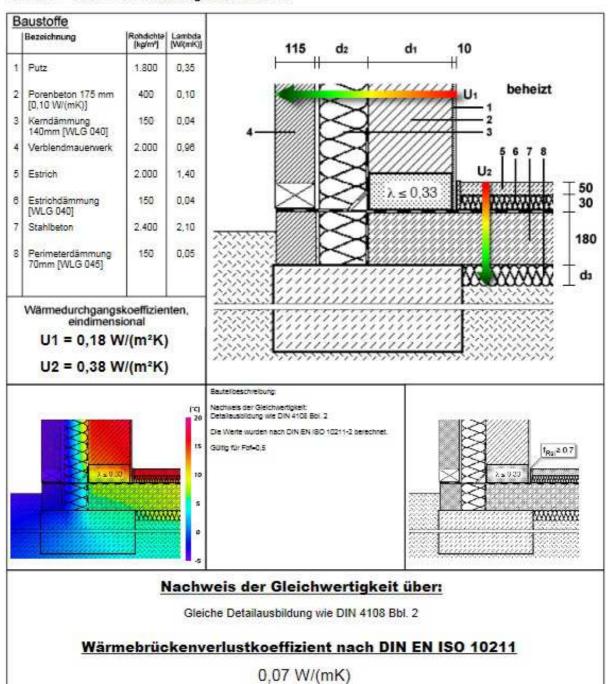
 $U-Wert = 0.148 \text{ W/m}^2\text{K}$

Übersicht der nachzuweisenden Wärmebrücken

Wärmebrücken:

- 1.) Anschluss Außenwand-Bodenplatte (exemplarisch Konformitätsnachweis S.99)
- 2.) Außenecke
- 3.) Innenecke
- 4.) Innenwand-Bodenplatte
- 5.) Anschluss bodentiefes Fenster (Terrassentür)-Bodenplatte
- 6.) Fensterbrüstung (exemplarisch detaillierter Wärmebrückennachweis S.100)
- 7.) Fensterlaibung
- 8.) Fenstersturz (EG)
- 9.) Fenstersturz (DG)
- 10.) Haustür-Bodenplatte
- 11.) Haustür-Laibung
- 12.) Haustür-Sturz
- 13.) Dachfenster (3x)
- 14.) Fenster Pultwand (3x)
- 15.) Dachverglasung (3x)
- 16.) Traufe
- 17.) Ortgang
- 18.) Anschluss Dach-Pultwand
- 19.) First
- 20.) Geschoßdecke
- 21.) Ringbalken
- 22.) Betonstütze

Beispiel Konformitätsnachweis mit DIN 4108 Bbl. 2


Projekt: Datum: 20.01.2014 Wärmebrückenkatalog 2011 [DIN 4108 Bbl 2: 2006-03]

Bauteil: AW auf Sohlplatte (1.1-K-17) Bauteillänge: 41,63 m

Wärmebrückenkatalog Datenblatt Nr.: 1

1.1 Bodenplatte auf Erdreich

1.1-K-17 Bild 17 - zweischaliges Mauerwerk

Bei den Grafiken handelt es sind um Bystemgrafiken und nicht um Ausführungszelchnungen. Als Grundlage wurde die DIN 4108 Bbi 2:2005-03 berücksichtigt.

Gültig für Fbf=0,5

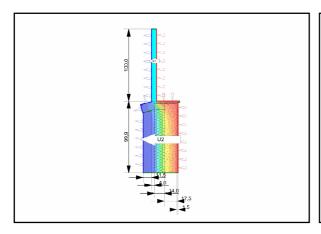
Beispiel detaillierte Wärmebrückenberechnung (Simulation)

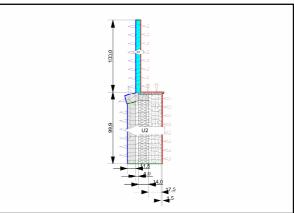
Projekt: KfW55

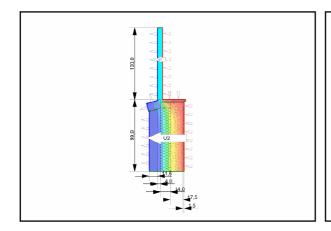
Projektnummer: 01

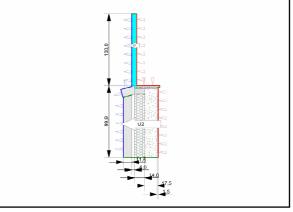
Gebäudeadresse: Le-Corbusier-Str. 34, 26127 Oldenburg

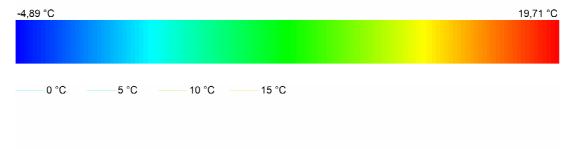
Bearbeiter: Jens Eilers


Beschreibung:

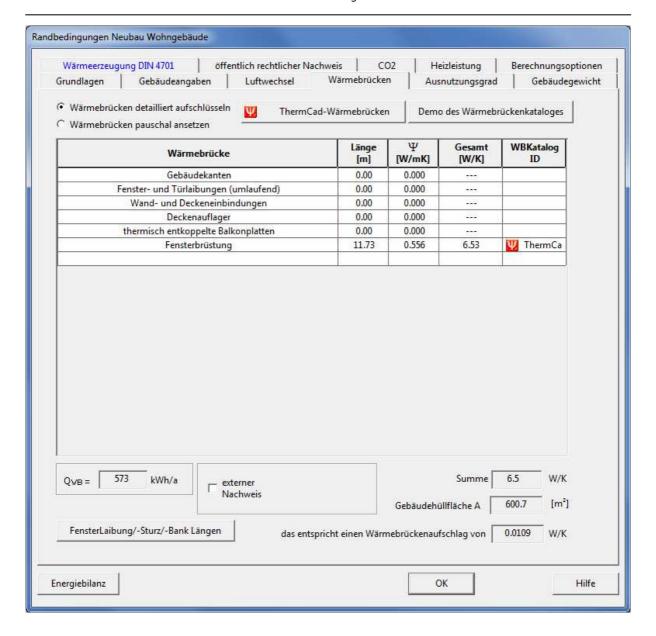

Programmversion: ThermCAD 1.1.987.0


Datum: 21.01.2014


EnEV Wärmebrücken


Code	Bezeichnung	Psi [W/(m K)]	Länge [m]	Gesamt [W/K]
WB1	Fensterbrüstung	0,556	11,7350	6,5303

Materia	Materiallegende							
	Nr.	Bezeichnung	λ [W/mK]					
	1	DIN V 4108 4.1.1 Voll-, Hochloch-, Keramikklinker 2000	0,9600					
	2	Luftschicht - nicht belüftet	0,2220					
	3	BASF Styrodur 2500 C DIN 4108-4 Kat. 2 0,035 50mm	0,0350					
	4	ISOVER Kontur KP 1-035 Kern-Dämmplatte	0,0350					
0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	Ytong Planblock PP 2-040	0,1000					
	6	DIN EN ISO 10456 Konstruktionsholz 500	0,1300					
	7	DIN V 4108 1.1.1 Putzmörtel aus Kalk, Kalkzement und hydraulischem	1,0000					
	8	DIN EN ISO 10456 Gestein Granit	2,8000					


Randbedingungen				
Bezeichnung	Temp. [°C]	Rs [W/mK]	Länge [m]	Wärmestrom [W/m]
adiabat			0,842	
außen (Außenwand)	-5,00	0,04	2,121	42,922
innen beheizt - Wärmestrom horizontal	20,00	0,13	2,300	-42,922

Ergebnis der Psi-Wert-Berechnung

Nachweis nach DIN EN ISO 10211 (zweidimensionale Verfahren)

Ψ-Wert: 0,5565 W/(mK)

 $Psi = L(2D) - ? (U1 \times L1 \times F) = 1,7169 - 1,1604 = 0,556 W/(mK)$

